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1 Introduction

A common feature of UV completions of our current theoretical framework, the Einstein ac-

tion coupled to the matter content of the Standard Model, are higher derivative corrections

to both the gravitational and matter low energy effective actions [1–5]. These corrections

are suppressed by the scale where the new effective description becomes relevant, which

may typically be the SUSY breaking scale or the Planck scale to give but two examples.

It is therefore important to study such higher derivative corrections in order to better un-

derstand the properties of the low energy effective actions of possible UV completions to

the Standard Model coupled to Einstein gravity.

Of the large variety of possible gravitational corrections, there arises a particularly

interesting case, where the additional term is given by the Gauss-Bonnet correction [1, 2, 6].

– 1 –
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In four dimensions, this is a topologically invariant term that is analogous to the Euler

number in two dimensions. Its variation is a total derivative and thus does not affect the

classical bulk equations of motion. Upon studying gravitational perturbations of theories

modified by higher derivative terms in any dimension, it has been discovered that only

the Gauss-Bonnet term does not give rise to ghost-like propagating modes with modified

kinetic terms [1, 2] at the level of Ricci squared corrections. The Gauss-Bonnet term,

for example, is the α′ order R2 correction to the Einstein action in the ten dimensional

heterotic string theory [7–9], and may arise in the lower dimensional actions of various

compactified string theories1 [10–12]. Furthermore, it can also result from α′ corrections

to the bosonic sector of the N = 2 gauged supergravity that arises in the case of spinning

D3-branes in type IIB superstring theory or spinning M2-branes in M-theory. In the dual

conformal field theory, these corrections would be of order 1/
√

λ in the strong coupling

expansion.

Another endless source of fascination has been the discovery that black holes have

a very natural thermodynamic description [13, 14]. In particular, they emit a thermal

spectrum and have an entropy related to their surface area. Of significant interest are black

holes in asymptotically anti-de Sitter space, since these black holes have the remarkable

feature of being thermodynamically favored for high enough temperatures, as was shown

in the classic paper [15]. With the advent of the anti-de Sitter/conformal field theory

correspondence [16–18], such anti-de Sitter black holes have become even more interesting,

since their thermodynamic structure is related to that of the dual conformal theory [19–

27]. Specifically, the high temperature black hole phase is dual to a deconfining phase,

whereas the low temperature thermal anti-de Sitter phase is dual to a confining phase in

the boundary theory [25].

In this paper we will study asymptotically anti-de Sitter black hole solutions, which

are electrically charged under a gauged U(1). Our gravitational action is corrected by

a Gauss-Bonnet term, and we further include an F 4 correction to the electromagnetic

field strength in the matter action. These corrections are a subset of all possible α′

corrections to the bosonic sector of N = 2 supergravity in four or five spacetime di-

mensions [12], and also a subset of α′ corrections for higher dimensional anti-de Sitter

space with a gauged U(1). We obtain explicit black hole solutions and study their respec-

tive global and local thermodynamic stability in the grand canonical ensemble, where the

external electric potential is held fixed. The thermodynamic phase structure we obtain

should, in principle, be related to the thermodynamic phase structure of the dual bound-

ary gauge theory, with a constant chemical potential. We will build our results from the

well studied cases of Reissner-Nördstrom anti-de Sitter black holes [10, 11, 28, 29] and

Gauss-Bonnet black holes [26, 27, 30–33], and generalize to the Gauss-Bonnet-F 4 black

hole.

The motivation for writing this paper is two-fold. On one level, we find it important

to develop a systematic framework where both the gravitational as well as the gauge sector

1In pure IIB string theory on AdS5 ×S5, there are no R2 corrections [3–5], but they may arise when we

compactify on less symmetric manifolds.
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have higher derivative corrections. This allows us to examine how various physical quanti-

ties, such as the entropy and mass of a black hole, are corrected at the linearized level. On

another more speculative level, it would be interesting to see if the thermal phase structure

can be reproduced by a phenomenological dual matrix model, as was done in [26, 27] for

the case of charged black holes in theories with only gravitational higher-derivative terms.

The second motivation is more speculative, given that one has to consider all corrections

to obtain the correct thermal phase structure. However, we find it is worth asking whether

the matching of [26, 27] can be expanded to our somewhat more general context. To do so

we must obtain the full thermal phase structure of the theory under consideration.

There are various features that are novel to this discussion. As far as we know, the

thermodynamics and thermal phase structure of the Gauss-Bonnet-F 4 black hole has never

been studied before. It is thus of interest to study the thermodynamics of three types of

limits in order to understand what the features of the thermodynamic structure are at-

tributed to. The first system we will explore is the charged Gauss-Bonnet black hole with

no F 4 corrections. Then we will study the F 4 black hole with no Gauss-Bonnet correc-

tions and finally we will obtain the thermodynamic structure of the black hole with both

corrections turned on. Furthermore, we will study black holes with hyperbolic, spherical

and flat spatial horizons [34–39] — known as topological black holes — and express our

results for an arbitrary number of dimensions.

Due to the various systems we are studying, we will organize the paper in three parts.

The first part of the paper will discuss the action of our theory and the explicit solutions to

the ansatz. We will further identify the parameter space giving rise to actual black holes.

In the second part, we will review the Gauss-Bonnet black hole with no F 4 corrections.

The results will be presented in a parametrization that is most convenient when studying

the F 4 black hole for the grand canonical ensemble, which is the ensemble most relevant

to holography. In the third part of the paper we present the thermodynamic structure of

the Gauss-Bonnet-F 4 black hole, again for the grand canonical ensemble. We conclude the

paper with a brief discussion and summary of our results.

Part I

The black hole solution

2 Framework

We will now develop the basic setup of the gravitational and matter actions. This will be

the goal of the section below, where we derive the equations of motion given a station-

ary spherically symmetric ansatz for the metric and the assumption of purely electrically

charged matter.

– 3 –
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2.1 R2 corrections and the Gauss-Bonnet term

Our story begins with the action for Einstein-Maxwell gravity with negative cosmological

constant and higher derivative corrections. In our conventions we have the following action:

Itot = Igrav + Imatter, (2.1)

where

Igrav =

∫

M

dd+1x
√−g

(

1

κ2
R − Λ + aR2 + bRµνRµν + cRµνρσRµνρσ

)

. (2.2)

As we shall see, the Hawking-Gibbons boundary term will not play a role in our discussion

and so we do not include it in the action.

From the point of view of a stringy UV completion these R2 corrections would have

coefficients of order α′. A particular combination of the coefficients, given by a = c = −b/4,

gives rise to the Gauss-Bonnet term. In four dimensions, this term gives rise to a total

derivative upon variation of the action with respect to the metric and thus is a topological

invariant for four dimensions. It is interesting to note that of all ten-dimensional string

theories, it is only the heterotic string theory that picks up R2 corrections, and they always

come in the form of the Gauss-Bonnet invariant. Furthermore, it is only the Gauss-Bonnet

invariant that does not give rise to ghost-like propagation for gravitational perturbations [2].

For such reasons we will work exclusively with the Gauss-Bonnet correction throughout

the rest of the discussion.

Having specified our gravitational action, we can obtain the equations of motion for

some arbitrary matter content. We will use the following convention for our stress-energy

tensor:

Tµν ≡ − 1√−g

δImatter

δgµν
. (2.3)

Upon variation of the action Igrav with respect to gµν we obtain the equations of motion

for our gravitational theory with Gauss-Bonnet corrections:

Tµν = −1

2
gµν

[

1

κ2
R − Λ + c

(

R2 − 4RµνRµν + RµνρσRµνρσ
)

]

+
1

κ2
Rµν + c

(

2RRµν − 4RµρR
ρ
ν − 4RµρνσRρσ + 2Rλρσ

µ Rνλρσ

)

. (2.4)

For the benefit of the reader we have included a rather lengthy derivation of this and

subsequent results, which demand extensive computations, in appendix A. In what follows

we will search exclusively for spherically symmetric solutions. In particular, we will be

using the stationary spherically symmetric ansatz

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
d−1
∑

i,j=1

g̃ijdxidxj , (2.5)

where we have that g̃ij is an Einstein metric whose Ricci tensor satisfies Rij = kg̃ij , and

furthermore, we rescale the xi such that det[g̃ij ] = 1. Many of the steps required to obtain

– 4 –
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the equations of motion are given in appendix B. We reproduce here only the tt-equation

and rr-equation which will be of more immediate use in the discussion that follows. The

tt-equation of motion is given by:

T tt = −(d − 1)

κ2

[

e−2(ν+λ)

(

−λ′

r
+

(d − 2)

2r2

)

+ e−2ν k

2r2

]

− 1

2
e−2νΛ

− (d − 1) (d − 3) c

[

1

2
e−2ν (d − 4) k2

(d − 2) r4
+ e−2ν−2λ

(

−2kλ′

r3
+

(d − 4) k

r4

)

+ (d − 2) e−2ν−4λ

(

2λ′

r3
− 1

2

(d − 4)

r4

)]

(2.6)

and the rr-equation of motion is given by:

T rr =
d − 1

κ2

[

e−4λ

(

ν ′

r
+

(d − 2)

2r2

)

− e−2λ k

2r2

]

+
1

2
e−2λΛ

− (d − 1) (d − 3) c

[

1

2
e−2λ (d − 4) k2

(d − 2) r4
+ e−4λ

(

−2kν ′

r3
− (d − 4) k

r4

)

+ (d − 2) e−6λ

(

2ν ′

r3
+

1

2

(d − 4)

r4

)]

. (2.7)

Our next task will be to obtain the equations of motion and stress-energy tensor following

from the matter Lagrangian.

2.2 Field strength corrections and the F 4 term

Our matter content is described by the usual Einstein-Maxwell matter Lagrangian with a

quartic field strength correction, given as follows:

Imatter = − 1

4g2

∫

dd+1x
√−gFµνFµν

+

∫

dd+1x
√−g

[

c1 (FµνFµν)2 + c2FµνF νλFλρF
ρµ
]

. (2.8)

Once again from the stringy point of view, the F 4 term would be of order α′, which is the

same order as the Gauss-Bonnet term. In fact, it is more general to include other α′ terms

of the forms F 2R and (∇F )2 (see for example [12, 40]). Furthermore, there is a potential

Chern-Simons term of the form CS(Aµ) = εµνρστ AµFνρFστ which could be included. For

purely electric solutions, however, this term will not contribute to our equations of motion.2

In any case, it is not our purpose here to obtain the most general α′ corrections to the

Maxwell-Einstein theory, but to study the thermodynamics of a theory with both Gauss-

Bonnet and gauge field strength corrections in asymptotic anti-de Sitter space.3 At the

linearized level, however, it was shown in [12] that field redefinitions of the metric and

2More precisely, we will be working with only Ftr(r) non-zero from which it is evident that there is no

non-vanishing Chern-Simons term.
3In fact as pointed out in [40], we can take an example of this situation to be the ten-dimensional

Lagrangian of the E8 × E8 or SO(32) heterotic string theory. The E8 × E8 or SO(32) gauge group has a

U(1) subgroup with field strength Fµν . Turning off all other gauge fields and higher forms and keeping

– 5 –
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U(1) gauge field allow us to eliminate four of the eight possible O(α′) terms in the effective

Lagrangian, at least for d = 4 spatial dimensions.

Having established our matter Lagrangian we can compute the stress energy-tensor by

applying (2.3) on Imatter:

T µν = − 1

4g2

(

1

2
gµνF ρσFρσ − 2Fλ

µF λν

)

+ c1

(

1

2
gµν (F ρσFρσ)2 − 4Fλ

µF λνF ρσFρσ

)

+ c2

(

1

2
gµνF λρFρσF στFτλ − 4FµρFρσF στFτ

ν

)

. (2.9)

We proceed to obtain the equations of motion for the Maxwell field strength. These are a

modified form of the Maxwell equations in a curved background:

∂ν

[√−g

(

− 1

g2
Fµν + 8c1 (F ρσFρσ)Fµν + 8c2F

µρFρσF σν

)]

= 0. (2.10)

We note that the equations will depend only on the combination (2c1 + c2), which we

denote by ε from now on:

ε ≡ 2c1 + c2. (2.11)

Our next task is to solve these equations for the spherically symmetric case, and we will

further assume that only Ftr is non-vanishing. For convenience we define the following:

Ftr(r) = eν+λf(r), (2.12)

such that the non-vanishing components of the stress-energy tensor become:

T tt = e−2ν

(

1

4g2
f (r)2 + 3εf (r)4

)

, (2.13)

T rr = −e−2λ

(

1

4g2
f (r)2 + 3εf (r)4

)

, (2.14)

T ij =
g̃ij

r2

(

1

4g2
f (r)2 + εf (r)4

)

. (2.15)

Inserting the ansatz (2.12) into the modified Maxwell equations gives rise to the following

equation for f(r):

8εf (r)3 +
1

g2
f (r) − Q

rd−1
= 0. (2.16)

the dilaton φ0 constant leaves us with the ten dimensional effective quartic order Lagrangian [7–9] (albeit

lacking a cosmological constant):

Lhet =
1

2κ2
R −

1

4
FµνF

µν +
α′h

16κ2
(RµνρσR

µνρσ
− 4RµνR

µν + R
2)

−
3α′hκ2

64
((FµνF

µν)2 − 4F
µν

FνρF
ρσ

Fσµ),

where h ≡ e−κφ0/
√

2.

– 6 –
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This cubic equation can be solved exactly, and will have either three or one real solutions,

from which we have to choose the physical one. By physical we simply mean that solution

which leads to the usual Coulomb’s law when ε approaches zero and which does not diverge

as r approaches infinity. The general solution to the cubic is given as follows:

fn(r) =
1

2

(

− ei 2πn
3

61/3∆ (r)
+

∆ (r)

ei 2πn
3 62/3g2ε

)

, (2.17)

where n ∈ {0, 1, 2} and we have defined:

∆ (r) =

(

18g6Qr1+2dε2 +
√

6 (g6r6dε3 + 54g12Q2r2+4dε4)
)1/3

rd
. (2.18)

When ε > 0 the physical solution corresponds to the only real solution which is given by

n = 0. When ε < 0 the physical solution is given by n = 1. This solution is real only

for radii larger than a critical value, rmin, obtained by requiring that the expression in the

root within ∆(r) is positive. In particular, we find that

r2d−2
min = −54g6Q2ε. (2.19)

For both of the physical solutions there are two complementary expansions to consider.

For χ ≡ (8g6Q2ε)/r2(d−1) ≪ 1 we can expand as follows:

f (r) =
g2Q

rd−1

[

1 − χ + O
(

χ2
)]

. (2.20)

We immediately recognize the first term as Coulomb’s law which is subsequently corrected

by ε effects. When χ−1 = r2(d−1)/(8g6Q2ε) ≪ 1 then the above expansion breaks down

and we should consider the following expansion:

f (r) =

(

Q

8εrd−1

)1/3
[

1 − χ−1/3

3
+ O

(

(χ−1/3)2
)

]

. (2.21)

The physical solutions and the validity of the two expansions is displayed in figures 1(a) and

(b). When ε < 0, the region χ−1 < 1 is excluded due to the physical bound (2.19), so we

should always consider the χ expansion in this case. In what follows χ is always evaluated

at r = rH , the horizon radius. Finally, when Q = 0 the physical solution corresponds to

f(r) = 0, since the other two blow up as ε tends to zero.

Having established our basic conventions and formalism for the higher derivative cor-

rections to the Einstein-Maxwell theory, we are ready to find the corresponding black hole

solutions. This will be the main goal of the next section.

3 The Gauss-Bonnet-F 4 topological AdSd+1 black hole

We have obtained the dynamical equations for our action with a given matter content and

we are now in the position to obtain an explicit solution for our ansatz. We will identify this

solution as a static charged black hole in asymptotic anti-de Sitter space, and we evaluate

its Hawking temperature and horizon radius.

– 7 –
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0 rmin

r

f

f1HΕ=-10-3
L

f0HΕ=10-3
L

fHΕ=0L

r

f

Χ> 1 Expansion

Χ< 1 Expansion

fHrL

(a) (b)

Figure 1. (a) The physical solution for ε = 0, ε > 0 and ε < 0, and (b) the validity of the χ ≫ 1

and χ ≪ 1 expansions for f(r).

3.1 Exact solution

In order to obtain the black hole solutions to the action we have specified, we can take

advantage of some of the equations of motion we derived in the previous section. In

particular, we find the following useful relation:

0 = e2νT tt + e2λT rr

=
(

ν ′ + λ′
)

[

(d − 1)

κ2

e−2λ

r
− 2 (d − 1) (d − 3) c

(d − 2) e−4λ − ke−2λ

r3

]

. (3.1)

The following result is immediately yielded:

ν ′ + λ′ = 0. (3.2)

This allows us to set ν = −λ up to a constant shift in ν, which can always be reabsorbed

into our definition of time. Having obtained this result, some algebra on the tt-equation of

motion given in (2.6) gives rise to the equation:

− (d − 1)

κ2

[

d

dr

(

−e−2λrd−2
)

+ krd−3

]

+ rd−1Λ

+ (d − 1) (d − 3) c

[

−(d − 4) k2rd−5

(d − 2)
+ 2

d

dr

(

e−2λkrd−4
)

− d

dr

(

e−4λ (d − 2) rd−4
)

]

+ 2rd−1

[

1

4g2
f (r)2 + 3εf (r)4

]

= 0. (3.3)

It is a simple task to integrate over r and find:

− (d − 1)

κ2

[

−e−2λrd−2 +
1

d − 2
krd−2

]

+
rd

d
Λ

+ (d − 1) (d − 3) c

[

− k2rd−4

(d − 2)
+ 2e−2λkrd−4 − e−4λ (d − 2) rd−4

]

+ I (r) = µ, (3.4)

– 8 –
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where we have defined:

I (r) ≡ 2

∫

drrd−1

(

1

4g2
f (r)2 + 3εf (r)4

)

(3.5)

and µ is an integration constant, which we will soon relate to the mass of the black hole. We

select the integration constant so that the limit of I(r) at infinity vanishes, in order to make

connection with the usual Reissner-Nördstrom solution in the absence of F 4 corrections.

The above integral I(r) will play a crucial role for the remainder of the paper, for it

encompasses the ε dependence of the metric in a highly non-trivial way. Its expansion for

χ ≪ 1 will be of use in later sections and is given by:

I(rH) = − g2Q2

2(d − 2)rd−2
H

[

1 +
(d − 2)

2(4 − 3d)
χ +

6(d − 2)

6 − 5d
χ2 + O(χ3)

]

. (3.6)

Notice that (3.4) is a quadratic equation in e−2λ, which can be solved quite simply to

give our metric component:

e−2λ =
k

d − 2
+

(d − 1) r2

2κ2D
±
√

K2r4

4D2
+

(I (r) − µ)

Drd−4
, (3.7)

where

D ≡ c (d − 1) (d − 2) (d − 3) , (3.8)

K2 ≡ (d − 1)2

κ4
+

4DΛ

d
. (3.9)

For particular regions of parameter space, the solution we have obtained contains a physical

singularity at the origin hidden by event horizons and is thus a black hole. We proceed to

examine the relevant parameter space.

c > 0. Let us discuss first the case c > 0 for our solution (3.7). We take k > 0 for the

discussion in this subsection, and leave the case of k < 0 with c > 0 for the next subsection.

Of the two roots in (3.7) only the negative one reduces to the usual anti-de Sitter Reissner-

Nördstrom solution as c and ε go to zero. This will be the one we will work with from now

on for c > 0. It has actually been shown for the ε = 0 case that the positive root solution

(with ck > 0) has gravitons that have ghost-like propagation [1, 2], and we take this as

further reason to stick to the negative root.

It is also clear from the form of the metric that arbitrarily large values of c > 0 are

not acceptable. In fact, it is clearly seen that as r → ∞ the values of c that give rise to a

real metric must satisfy the following bound:

c <
d (d − 1)

(d − 2) (d − 3)

(

− 1

κ4Λ

)

. (3.10)

If c is above this bound our metric becomes complex for the particular ansatz we have chosen

and is thus rendered unphysical. It was, however, pointed out in [31] that exactly where

the asymptotically anti-de Sitter metric breaks down the de Sitter metric with positive Λ

yields an acceptable solution. We will not consider the implications of this observation and

simply end our parameter space where the bound (3.10) is saturated.
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ck < 0. For the case of c < 0 with k > 0 our solution (3.7) tends to the usual anti-de

Sitter Reissner-Nördstrom black hole as c → 0 for the positive root. Furthermore, we

must be particularly careful as to when the positive root solution of (3.7) gives rise to

black holes with horizons. The equation for the horizon radius rH is given by solving the

equation gtt = 0. When we choose the positive root, gtt can only vanish if the sum of the

first two terms in (3.7) is negative for values of r smaller than rH , in order to cancel the

positive contribution of the square root as r tends to rH . This condition implies that

r2
H ≥ −2 (d − 3)κ2ck. (3.11)

Furthermore, we should mention that the above condition holds whenever c > 0 and k < 0

due to an analogous reasoning, taking into account that we must take the solution with

the negative root.

We would like to emphasize the above point: once we set ck < 0 and choose the

appropriate sign for the root, then the black hole solutions of our theory have a minimum

horizon radius given by (3.11).

3.2 Vacuum solutions

If we consider the vacuum black hole solution, µ = Q = 0, it allows for horizons but no

singularities whenever k < 0. The horizon radius of these geometries is given by:

r2
H =

|k|
(d − 2)

∣

∣

∣

∣

K

2|D| −
(d − 1)

2κ2D

∣

∣

∣

∣

−1

. (3.12)

When k > 0 there is no horizon and the vacuum solutions correspond to regular anti-de

Sitter space with spherical spatial slices. When k < 0 then the µ = Q = 0 is not actually

the vacuum solution, as there are negative energy black holes.

3.3 Horizon geometries

Taking k = ±(d − 2) or k = 0 gives rise to three qualitatively different asymptotic space-

times. In particular, the asymptotic structure we obtain is as follows:

k = +(d − 2) → Sd × R
1 (3.13)

k = 0 → R
d × R

1 (3.14)

k = −(d − 2) → H
d × R

1, (3.15)

where the R
1 denotes the timelike direction and H

d denotes the spatial d-dimensional

hyperboloid. We will be studying the thermodynamics of all three branches in the sections

that follow.

3.4 Horizon, temperature and extremality

We will proceed to study the horizon structure and Hawking temperature TH of our black

hole solutions. The horizon radius rH is given by the value of r that leads to the vanishing
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of the gtt component of the metric. This condition implies that rH obeys:4

− 1

κ2

d − 1

d − 2
krH

d−2 − c
(d − 1) (d − 3)

d − 2
k2rH

d−4 +
Λ

d
rH

d + I (rH) − µ = 0. (3.16)

The above equation will have multiple solutions for rH corresponding to multiple horizons.

The true event horizon is given by the largest positive root of (3.16).

The Hawking temperature is most readily obtained by the well known result [14] which

reads 4πTH = (e−2λ)′|r=rH
. Applying this formula to our metric gives the following equa-

tion for the temperature:

4πTH

[

(d − 1) rH
2

κ2
+

2kD

d − 2

]

rH
d−3

− 2

κ2

d − 1

d − 2
krH

d−2 +
4Λ

d
rH

d + (d − 4)µ + rH
d−3

(

I (r)

rd−4

)′

= 0. (3.17)

We can always choose to parameterize our thermodynamics with two of the four vari-

ables rH , TH , Q and µ, since we have a constraint equation relating the temperature to the

derivative of gtt, as well as the above constraint that rH must obey. The most convenient

choice for our discussion will be rH and Q. The reason for this choice is evident from the

complicated form of I(r), which can only be written explicitly as a function of Q and rH .

In this language, we can express the TH and µ as functions of rH and Q as follows:

TH =
1
κ2 (d − 1) krH

2 + c (d−1)(d−3)(d−4)
d−2 k2 − ΛrH

4 − rH
5−dI ′ (rH)

4π
[

(d−1)rH
2

κ2 + 2kD
d−2

]

rH

, (3.18)

µ = − 1

κ2

d − 1

d − 2
krH

d−2 − c
(d − 1) (d − 3)

d − 2
k2rH

d−4 +
Λ

d
rH

d + I (rH) . (3.19)

We can obtain the horizon radius for the extremal black hole by solving TH = 0. We

will mostly be interested in the explicit form for the Q = 0 extremal black hole with gtt

component follows from (3.7):

− gtt(r) ≡ e−2λ =
k

d − 2
+

(d − 1) r2

2κ2D
±
√

K2r4

4D2
− µe

Drd−4
(3.20)

and horizon radius satisfying:

gtt(re) = 0 (3.21)

The parameter µe is obtained by evaluating (3.19) at re with Q = 0:

µe = − 1

κ2

d − 1

d − 2
kre

d−2 − c
(d − 1) (d − 3)

d − 2
k2re

d−4 +
Λ

d
re

d. (3.22)

4It may seem that (3.16) has solutions for kc < 0 that violate the bound (3.11); however, these solutions

correspond to the metric (3.7) with the opposite root.
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3.5 Asymptotic solution

For far away observers, we can take the r → ∞ limit of our metric to obtain an expansion

in powers of r:

e−2λ =
r2

ℓ2
+

k

d − 2
− m

rd−2
+

q2

r2d−4
+ O

(

1

r4d−6

)

, (3.23)

where we have made the following relations between the asymptotic parameters and those

in our action:

Λ = −d (d − 1)

ℓ2κ2
+

dD

ℓ4
, (3.24)

µ = −mK, (3.25)

Q2 = 2(d − 2)Kq2/g2. (3.26)

We immediately note that the above asymptotic form is exactly that of the charged black

hole with a negative cosmological constant. It is important, however, to recognize that

the parameters of our theory are Q, µ and Λ and not q, m and ℓ, and it is with these

parameters that we will continue to work for the rest of the paper.

Finally, we can write down the mass M and charge Q of the black hole as measured

by a faraway observer:

M = −Σk ×
(d − 1)µ

Kκ2
, (3.27)

Q2 = Σ2
k × 4(d − 1)(gQ)2

Kκ2
, (3.28)

where we have that Σk is the (d− 1)-dimensional volume of a hypersurface with curvature

given by (d − 1)k. Note that c is not required to be small in the above expressions. In

section 4.2 we will compute the thermodynamic mass and charge of the black hole in the

grand canonical ensemble and find that they agree favorably with the above expressions

when |c| ≪ 1.

Part II

Gauss-Bonnet thermodynamics

4 Global stability

Having completed the discussion of our black hole solutions, we can proceed to examine

their thermodynamic phase structure. Hawking and Page demonstrated in their semi-

nal paper [15] that asymptotically anti-de Sitter Schwarzschild black holes are thermally

favored when their temperature is sufficiently high, whereas the pure anti-de Sitter back-

ground was thermally favored for low temperatures. As the temperature is decreased there

is a first order phase transition leading the black hole spacetime to the pure anti-de Sit-

ter spacetime. Subsequently, the effect has been studied for various other asymptotically

anti-de Sitter black holes, including those with Gauss-Bonnet terms [10, 11, 26–33, 38].

– 12 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
0

Our aim in this work is to contribute to this discussion the case for charged black holes, in

theories with both Gauss-Bonnet terms as well as F 4 terms. We begin by reviewing and

expanding the ε = 0 case which was considered in [27, 31]. Our results are formulated in

the language of the rH , Q parametrization, which is best suited for the subsequent ε 6= 0

analysis.

4.1 Free energy

The free energy for our black hole solution is obtained from the thermal partition function,

Z, of our theory. The Euclidean metric is obtained by continuing to imaginary time and

identifying it periodically. The period is given by the inverse Hawking temperature.

Using the saddle point approximation we can evaluate the partition function by eval-

uating the classical action of the black hole metric. In particular, the free energy is given

as follows:

F = −kBTH log Z ≈ −kBTHIBH
E . (4.1)

We should pause for a moment and note that we are working in the grand canonical

ensemble, where we keep that electric potential fixed rather than the electric charge and

thus the free energy we are computing is in fact the Gibbs free energy. We hope to study

the thermodynamics of the canonical ensemble, where the electric charge of the black hole

is kept fixed, in a future work.

The Euclidean action evaluated for the black hole solution is in fact divergent. In

order to regulate this divergence, we cut off our space at finite yet large r = rmax and

subtract off the Euclidean action of the reference background before taking the cutoff back

to infinity. We note that one can obtain the free energy of the black hole through the

method of counterterms (see for example [41–45]), which is particularly convenient if there

is no natural reference background to subtract.

The reference background for the k > 0 is given by the pure thermal anti-de Sitter

space obtained from (3.7) with k > 0 and µ = Q = 0, along with a uniform external

potential taking the value of (minus) the internal electric potential at the horizon of the

black hole [46]. Such a uniform electric potential leads to a vanishing Maxwell tensor, and

consequently the Euclidean action remains that of the original thermal anti-de Sitter space.

Our reference background for the case of k = 0 is given by the pure thermal anti-de

Sitter space obtained from (3.7) with k = 0 and µ = Q = 0. Once again, there is a uniform

external potential as in the k > 0 case.5

5However, we should make an important remark about the k = 0 regularization procedure. For the

case of vanishing Gauss-Bonnet coefficient it was shown in [36] that there exists a vacuum solution with

energy lower than pure anti-de Sitter space, known as the anti-de Sitter soliton, that is also asymptotically

anti-de Sitter space. This solution can be regarded as the reference background for the Hawking-Page

transition as long as we compactify one of the directions of the Ricci flat black hole in order to embed

it asymptotically in the anti-de Sitter soliton background. The thermodynamics with the anti-de Sitter

soliton vacuum were studied with no Gauss-Bonnet coefficient in [37] and in [39] for finite Gauss-Bonnet

coefficient but electrically neutral black holes. In this paper we will not consider the anti-de Sitter soliton

vacuum as a reference, we will only explore the Hawking-Page structure for the unmodified asymptotically

anti-de Sitter charged Gauss-Bonnet black holes with F 4 corrections. It would be interesting to explore the

thermodynamics of the anti-de Sitter soliton reference background for the theories we are considering.
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Finally, for the case of black holes with curvature k < 0 the reference background is

rather different. One possible regularization procedure is that of [34, 38, 46], where we

subtract the (3.7) solution with k < 0 and µ = Q = 0. This solution is still asymptotically

anti-de Sitter space; however, it also contains a horizon and thus a fixed temperature. In

order to avoid the problem of our reference background having a fixed temperature, we

will choose our reference background to be the neutral extremal black hole (3.20) which

can have an arbitrary periodicity in Euclidean time. Note, however, that black holes with

non-zero external potential cannot decay to this reference background, since the reference

background acquires a non-vanishing Wilson loop around the Euclidean time for an arbi-

trary external potential. Thus we cannot discuss Hawking-Page transitions in the k < 0

case, and we will only study the local phase structure with our free energy regulated

by (3.20). We refer to [46] for more details (see also [47]).

There is one more subtlety as to how we regulate the Euclidean action. We must

ensure that the thermal circle of both the black hole solution and the reference background

are the same at the cutoff radius rmax in order to have the same geometry at r = rmax.

This is possible since, even though the Euclidean black hole can only have a particular

temperature to avoid conical singularities, Euclidean anti-de Sitter space or the Euclidean

extremal black hole can have any temperature and no conical singularities.

We are now ready to compute the free energy. It is very helpful to take the trace

of (2.4) which yields the expression:

(d − 1)

κ2
R − (d + 1) Λ + c (d − 3)

[

R2 + RµνRµν + RµνλρR
µνλρ

]

− (d − 3)

4g2
FµνFµν + c1 (d − 7) (FµνFµν)2 + c2 (d − 7)FµνF νλFλρF

ρµ = 0. (4.2)

Using the above result allows us to decompose our Euclidean action into the following two

pieces:

Itot = I1 + I2, (4.3)

where we have defined:

I1 ≡ − 2

(d − 3)

∫

dd+1x
√−g

(

1

κ2
R − 2Λ

)

≈ −βHF1, (4.4)

I2 ≡ 4

d − 3

∫

dd+1x
√−g

[

c1 (FµνFµν)2 + c2FµνF νλFλρF
ρµ
]

≈ −βHF2 (4.5)

and βH ≡ T−1
H . Notice that we have eliminated the Gauss-Bonnet term from our action.

We regularize our Gibbs free energy by subtracting away that of the pure thermal

anti-de Sitter space or any other appropriate reference background with the thermal circles

identified at the cutoff boundary. This leaves us with the expression:

− F1

Σk
= − 2

(d − 3)
lim

rmax→∞

[∫ rmax

rH

drrd−1

(

1

κ2
R − 2Λ

)

−e−λ(rmax)+λ0(rmax)

∫ rmax

rvac

drrd−1

(

1

κ2
R0 − 2Λ

)]

. (4.6)
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The factors of βH have canceled since they also appear as part of the Euclidean time

integral. R0 is the Ricci scalar of the reference background solution. The vacuum horizon

radius, rvac, vanishes for k ≥ 0, whereas it equals re in (3.21) for k < 0. We can now use

the following relation for the curvature scalar:

R = − 1

rd−1

(

rd−1e−2λ
)′′

+
(d − 1) k

r2
(4.7)

to obtain

F1 − Fvac

Σk
=

2

d − 3

[

1

κ2

(

4πrH
d−1TH(rH , Q) − d − 1

d − 2
krH

d−2

)

− µ(rH , Q)

2
+

2

d
ΛrH

d

]

, (4.8)

where Fvac = 0 for k ≥ 0 and

Fvac

Σk
=

2

d − 3

[

− 1

κ2

d − 1

d − 2
krvac

d−2 − µvac

2
+

2

d
Λrvac

d

]

(4.9)

for k < 0. The Hawking temperature TH as a function of rH and Q is given in (3.18).

We finally note that F2 = 0 for the case of vanishing ε in accordance with [31], so that in

fact (4.8) is the total Gibbs free energy of our thermodynamic system.

In the grand canonical ensemble we are considering systems with a fixed external

electric potential, φ. Imposing that φ be fixed to cancel the electric potential at the

horizon of the black hole, φBH , leads to the following expression:

φBH(rH , Q) = − gQ

2(d − 2)rd−2
H

= −φ(rH , Q). (4.10)

This expression will be of use when computing the thermodynamic energy, entropy and

charge of the black hole. Furthermore, we will study the global and local stability of the

system along slices of constant φ.

4.2 Thermodynamic quantities

The Gibbs free energy contains all the information required to compute these quantities

which are given by the usual thermodynamic relations. In particular, the thermodynamic

energy (which we will also call mass) is given by:

E =

(

∂I1

∂βH

)

φ

− φ

βH

(

∂I1

∂φ

)

βH

= Σk ×
[

(d − 1) krd−2
H

(d − 2) κ2
+

g2Q2r2−d
H

2 (d − 2)
− rd

HΛ

d
+

(d − 1) (d − 3) ck2rd−4
H

(d − 2)

]

= −Σk × µ(rH , Q), (4.11)

where we recall that I1 = −βHF1 was given in (4.8) and our electric potential φ is given

in (4.10). The thermodynamic charge and entropy are given by:

Q = − 1

βH

(

∂I1

∂φ

)

βH

= Σk × 2gQ, (4.12)
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S = βH

(

∂I1

∂βH

)

φ

− I1 = Σk ×
(

4πrd−1
H

κ2
+ 8πck (d − 1) rd−3

H

)

. (4.13)

Our thermodynamic electric charge has a factor of 2g that may differ from other expressions

in the literature. This is due to our normalization of the kinetic term of the field strength

in (2.8). We also notice that the thermodynamic entropy can become negative when ck < 0

(see for example [48]). In this case we find that the minimum radius of a black hole with

positive entropy is given by:

r2
H(S = 0) = −2ck(d − 1)κ2. (4.14)

It is worth noting that since our free energy is parameterized by rH and Q, the above

expressions are formal and should be computed as derivatives in rH and Q. We give the

explicit expressions for the thermodynamic derivatives in appendix C. It is also a point

of interest to notice that the thermodynamic energy and charge differ from the ones we

obtain from the asymptotic metric in (3.28) when c is not small. This should not come as

a surprise since the faraway observables are not the conserved ADM charges of the metric.

On the other, hand the thermodynamic quantities computed above do in fact agree with

the conserved ADM charges (see for example [49]) as expected.

4.3 Hawking-Page transitions

Since we are parameterizing our thermodynamic variables with rH and Q, we must express

µ and TH in terms of the horizon radius and charge from (3.17) by setting ε = 0:

µ = − k

κ2

(d − 1)

(d − 2)
rd−2
H − c

(d − 1) (d − 3)

(d − 2)
k2rd−4

H +
Λ

d
rd
H − Q2g2

2 (d − 2) rd−2
H

, (4.15)

TH =

k
κ2 (d − 1) r2

H + c (d−1)(d−3)(d−4)
d−2 k2 − Λr4

H − Q2g2 1

2r
2(d−3)
H

4π
[

(d−1)r2
H

κ2 + 2kD
d−2

]

rH

. (4.16)

As in the usual Hawking-Page transition we are essentially going to search for regions

in our parameter space where the free energy is negative, and identify these regions with

black holes that are thermally favored over the reference background. We further note, as

discussed in [10, 11, 46], that there may be regions where black holes are favored globally

over the reference background, but are locally unstable in the sense that the specific heat

of the thermodynamic system is negative for the globally stable configuration. This implies

that even though we have located regions where the black holes are globally favored, they

may still decay into some (unknown) configuration that presumably escapes our ansatz [10,

11]. We will not attempt to find what these solutions are but we will still attempt to identify

such regions in the analysis that follows.

We should also mention once again that the ε = 0 analysis has been performed

in [27, 31], although we present it in slightly more generality since we are concentrat-

ing on arbitrary dimensions and arbitrary horizon curvature k. Furthermore, we present

the results in the rH , Q parametrization for d = 4 in order to readily compare the vanishing
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ε results with the non-vanishing ε ones. We have done the d ≥ 4 analysis in the rH , TH

parametrization and the results are presented in appendix D.

In order to study the global thermodynamic stability of our system we can obtain

an explicit form for the critical temperature for any c in any number of dimensions by

solving (4.8) at F1 = 0 for TH . When working in the rH , TH parametrization for pure

Gauss-Bonnet corrections, we show in appendix D that this results in:

Tc = − 1

4π

Λ
d r4

H + (d−1)(d−3)k2c
d−2

r3
H

2κ2 − kc (d − 1) rH

. (4.17)

The significance of the critical temperature is as follows. For temperatures above the critical

temperature with electric potential fixed at infinity, we find that the black hole solution is

thermally favored globally with respect to the reference background solution with constant

electric potential. Conversely, for temperatures below the critical temperature we will have

that the reference background solution is globally favored. This is precisely the Hawking-

Phase transition.

We can also express the transition between globally stable black holes versus the ref-

erence background solution in terms of a critical charge which is relevant to the rH , Q

parametrization we are working in. In particular, we find that the critical charge Qc is

given by:

Qc
2 =

2(d − 1)

g2





1
κ2 krH

2 + ck2
(

(d − 7) + 2c (d − 1) (d − 3) κ2k
r2
H

)

1 − 2c (d − 1) κ2k
r2
H

+
(d − 2) ΛrH

4
(

1 + 6c (d − 1) κ2k
r2
H

)

d (d − 1)
(

1 − 2c (d − 1) κ2k
r2
H

)



 rH
2(d−3). (4.18)

Whenever we are considering a configuration with Q > Qc we find that the black hole is

globally favored thermodynamically, whereas if Q < Qc we have that reference background

solution is globally favored.

There are two more critical values of the charge that are of interest. These correspond

to those black hole configurations with zero mass and those black hole configurations with

vanishing temperature. The zero mass black holes have a charge that satisfies the following

expression:

Q2
M=0 =

2

g2

[

−(d − 1)

κ2
krH

2 − c (d − 1) (d − 3) k2 +
(d − 2)Λ

d
rH

4

]

rH
2(d−3). (4.19)

This bound is not physical in the sense that anti-de Sitter space allows for black holes

with negative thermodynamic mass but positive horizon radius and entropy. However, we

find it instructive to include this bound in our analysis of the thermodynamics, in order to

explore regions of the parameter space containing negative and positive mass black holes

with greater clarity.
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The second bound, which is in fact physical, is the extremality bound which requires

that our black holes have a non-negative temperature. For a given rH the charge of an

extremal black hole is given by:

Q2
TH=0 =

2

g2

[

(d − 1)

κ2
krH

2 + c
(d − 1) (d − 3) (d − 4)

d − 2
k2 − ΛrH

4

]

rH
2(d−3). (4.20)

So the physical bound on the black hole charges following from the above expression is that

Q ≤ QTH=0. Before we study the full global phase structure expressed in the φ, c plane,

it will be convenient to consider the local structure first and build the global picture from

there. In the next section we discuss the conditions for local thermodynamic and electric

stability and study the various configurations arising.

5 Local stability

Having obtained the conditions for the global thermodynamic stability of a solution, we

proceed to explore the local thermodynamic structure by computing the specific heat and

electrical permittivity of our system. The specific heat informs us about the thermal

stability of the black hole under temperature fluctuations, and the electrical permittivity

informs us about the thermal stability of the black hole under electrical fluctuations.

5.1 Specific heat and electrical permittivity

Even though a black hole configuration may be found to be in global thermodynamic

preference to the reference background, it may still be locally unstable to some other

globally favored configuration. It is not clear to what stable configurations such locally

unstable black holes decay and our guess is that such configurations do not satisfy our

simple ansatz. Additionally, we will also find configurations of multiple locally stable

black hole solutions corresponding to a single temperature, for a fixed potential. Such

configurations open the possibility for first order phase transitions from the metastable

black hole to the globally favored one.

In order to analyze local stability, we will consider two notions of local stability as

discussed in [10]. Firstly, we will consider the specific heat of our system in the grand

canonical ensemble. This is given by the following expression:

Cφ = TH

(

∂S

∂TH

)

φ

. (5.1)

For regions of the parameter space where the specific heat is positive, we have that the

black holes are locally stable to thermal fluctuations. If the specific heat is positive, then an

increase in temperature for fixed potential will result in an increase in the entropy resulting

in a thermally stable situation. On the other hand, if temperature fluctuations lead to a

decrease in the entropy of the black hole the system is locally unstable.

Suppose for a moment that we have a temperature with n black hole solutions. Such

a temperature will also have (n − 1) turning points as a function of the radius for fixed

φ. For large radii we have that the temperature and entropy are both increasing functions
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of rH and thus the largest black hole has dS/drH > 0 and (dTH/drH)−1 > 0 for a fixed

φ. This condition leads to a positive specific heat and thus local stability under temper-

ature fluctuations. Furthermore, the dTH/drH derivative changes sign consecutively with

decreasing horizon radius, which in turn leads to a sequence of locally stable and locally

unstable black holes for decreasing radius, so long as dS/drH > 0 holds for fixed φ. The

only case where we might have dS/drH < 0 is for ck < 0; however, it is easy to show

that such black holes will have a radius that violates the bound obtained in (3.11) and are

thus rendered unphysical. We notice this feature throughout our analysis in the situations

where we have many black holes. Finally, we note that if our temperature has only one

black hole solution with positive entropy then this black hole will be locally stable.

There is a second notion of local stability that we will study throughout the paper. This

was introduced by Chamblin et al. in [10] for the case of charged black hole thermodynamics

and it is known as the isothermal electrical permittivity εT of the black hole. It is given as

follows,

εT =

(

∂Q

∂φ

)

TH

. (5.2)

If εT is non-negative our system is stable under electrical fluctuations. More specif-

ically, if the electric potential at the surface of the black hole increases as a result of

introducing an infinitesimal amount of charge to, the black hole the system is locally elec-

trically stable. In contrast a black hole whose electric potential decreases when absorbing

a small amount of charge is locally unstable.6

Having discussed our notions of thermodynamic stability, we can obtain their explicit

expressions as functions of rH and Q. The specific heat for constant electric potential is

given by:

Cφ

Σk
= −

4π (d − 1) rd−3
H

(

r2
H + k̃

)2
[

(d − 1) k
κ2

(

2r2
H + d−4

d−2 k̃
)

− 2Λr4
H − g2Q2

r
2(d−3)
H

]

κ2

(

A −
(

r2
H − k̃

)

g2Q2

r
2(d−3)
H

) . (5.3)

The isothermal electrical permittivity is given by:

εT

Σk
=

g

2 (d − 2) rd−2
H











1 +

2 (d − 2)
(

r2
H + k̃

)

g2Q2

r
2(d−3)
H

A −
[

(2d − 3) r2
H + (2d − 5) k̃

]

g2Q2

r
2(d−3)
H











. (5.4)

We have defined the following quantities in the above expressions:

A ≡ (d − 1)
k

κ2

(

2r4
H +

d − 8

d − 2
k̃r2

H +
d − 4

d − 2
k̃2

)

+ 2Λr4
H

(

r2
H + 3k̃

)

, (5.5)

k̃ ≡ 2 (d − 3) ckκ2. (5.6)

6Let us clarify this with an analogy from classical thermodynamics. When studying the Gibbs free energy

in a hydrodynamic system, our electric potential corresponds to the volume V of the system and the charge

of the black hole to the pressure P . Then a positive isothermal electrical permittivity will correspond to

minus the isothermal compressibility. In particular, a negative εT would be analogous to a thermodynamic

system that decreases in size as a result of increasing the pressure, which is clearly locally unstable.
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At this point we can proceed to study the local stability of our black hole solutions for the

various regions of our parameter space. For the sake of completeness we have also included

the corresponding figures of the following analysis in the rH , TH parametrization for d = 4

in appendix D.

At this point, we should emphasize that the effects we uncover are qualitatively differ-

ent from those obtain in the pure Einstein-Maxwell theory [10, 11]. In other words, effects

due to one-loop corrections become as significant as tree level effects, which suggests higher

order effects are also important. It was shown in [26, 27], however, that for d = 4 spatial di-

mensions the Gauss-Bonnet corrections can be matched with gauge coupling corrections in

a phenomenological dual matrix model. This gives some evidence that the thermodynamic

phase structure we uncover should be visible in a similarly constructed phenomenological

dual matrix model.

5.2 k > 0

d = 4 spatial dimensions. We begin by studying the c = 0 in five spacetime dimen-

sions, which was discussed in [10, 28]. When φ2 < 3k/8κ2, we find temperatures cor-

responding to two black hole solutions. The smaller of these always has Cφ < 0 and is

thus rendered locally unstable under temperature fluctuations whereas the larger one is

thermally and electrical locally stable. Only a subset of the thermally unstable are also

electrically unstable; however, all thermally stable black holes are also electrically stable.

When φ2 > 3k/8κ2 only one black hole solution exists which is always locally stable both

electrically and thermally as well as being always globally stable.

The case c > 0 with d = 4 is depicted in figures 2(a) and (b) for c < 1/6κ4|Λ| and

c > 1/6κ4|Λ| respectively [27]. By looking at the slices of constant φ in figure 2(a) we find

slices which intersect the constant temperature slices once (for higher values of φ) or three

times (for lower values of φ) corresponding to one or three black hole solutions. In the region

with three black holes, only the largest and smallest ones are locally stable, whereas the

intermediate sized black hole always resides within the region of local instability enclosed

by the Cφ-curve. These black holes may also live in the region of electrical instability which

resides within the region of local instability for all the cases we consider. The smallest black

hole lives within the region of global instability enclosed by the global stability (F ) curve

and will thus always have a decay channel to thermal anti-de Sitter space. The largest black

hole may or may not be globally favored. A configuration where a black hole is globally

unstable may have two decay channels: either the reference background or the black hole

with lower free energy. Such metastable configurations reside within the region enclosed by

the metastable (MS) curve. For lower values of the potential, the constant φ curves cross

the F -curve, thus it can experience a Hawking-Page transition. For larger values of φ, the

constant φ slices cross the extremality curve, TH = 0, without ever reaching the F -curve.

This means, in particular, that even at zero temperature the ground state of the boundary

theory has non-vanishing thermodynamic entropy.7

7Note, however, as discussed in [28] that this does not imply that there is no longer a confinement-

deconfinement phase transition. The temporal Wilson lines have vanishing expectation value since they
are unable to wrap around a thermal circle with infinite periodicity. Similarly the spatial Wilson loops are
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Figure 2. Thermal structure for k = 2, d = 4 and (a) c < 1
6κ4|Λ| , (b) c > 1

6κ4|Λ| .

As we increase the value of c, we no longer find temperatures with three black hole

solutions over slices of constant φ. Instead we obtain the situation in figure 2(b). The region

of local instability has disappeared altogether and we find single black hole solutions that

can undergo Hawking-Page transitions. Furthermore, for large enough φ some of the black

holes in figure 2(b) are globally favored along the whole constant φ slice and experience no

Hawking-Page transition.

Finally, we consider the case of c < 0 for d = 4. When c < −1/6|Λ|κ4 the behavior

is identical to the d > 4 case and it will be described below. Here we describe the case

c > −1/6|Λ|κ4, which is depicted in figure 3. For slices of constant φ we find constant

temperature slices that intersect them at either one point for larger values of φ or at two

points for smaller values of φ. For regions with two black holes, the smaller black hole is

always within the region of local instability. There are two cases to be noted. The first

case corresponds to slices of constant φ, where the larger stable black hole can experience

a Hawking-Page transition by moving along the φ slice. The second case corresponds to

the larger black hole unable to experience a Hawking-Page transition because it encounters

the region of negative entropy, to the left of the S-curve or Cφ-curve, before reaching the

F -curve. The latter case occurs for relatively large values of φ. Finally, we find that for

those slices of constant temperature intersecting the constant φ slices at a single point,

and thus corresponding to a single black hole solution, there is no Hawking-Page transition

accessible. More specifically the constant φ curve ends at the extremality bound without

intersecting the global stability bound and thus remains globally stable as we continuously

lower the temperature.

d > 4 spatial dimensions. For the higher dimensional case we find that the c = 0 case

remains unchanged [10, 28]. Once again there is a critical value of the electric potential

φ2
c = (d−1)k

2(d−2)2κ2 . If φ2 > φ2
c we have a black hole solution that is always globally and locally

not obstructed by the horizon which is infinitely far down the throat for an extremal black hole and thus

cannot exhibit an area law.
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Figure 3. Thermal structure for k = 2, d = 4 and c = − 1
8κ4|Λ| .

Q =02

F Cφ

εT

φ=const

Figure 4. Thermal structure for k = d − 2, d > 4 and c > 0.

stable and thus undergoes no Hawking-Page transition. If φ2 < φ2
c we have two black

hole solutions of which only the smaller one is locally unstable and the other may undergo

Hawking-Page transitions as we vary the temperature.

When c > 0 in higher dimensions, we find temperatures with two black hole solutions of

which the smaller one is always locally unstable. For small enough values of the potential

we have that the larger black hole may undergo a Hawking-Page transition. For large

values of the potential the constant φ slices end at the extremality bound, as is evident

from figure 4 and thus there is no Hawking-Page transition.

Finally, when c < 0 in higher dimensions we find various deviations from the case with

five spacetime dimensions. Let us begin with small negative values of c as exhibited in

figure 5(a). We find temperatures with three black hole solutions of which the smallest and

largest are always locally stable, whereas the intermediate sized black hole is always locally

unstable. For such three black hole configurations the smallest is always globally favored,

but we find values of φ where all three can be globally favored for a particular temperature.

At such temperatures we can posit the existence of a metastable phase transition to the

black hole with the lowest free energy provided that it has positive entropy. In the case that
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Figure 5. Thermal structure for k = d−2, d > 4. The two regions of c displayed are: (a) c̃ < c < 0

and (b) − (d−3)(d−4)(2d−3)
4(d−1)(d−2)(2d−5)κ4|Λ| < c < c̃.

the globally stable black hole has negative entropy such transitions cannot occur.8 This

phenomenon happens for arbitrarily small negative values of the Gauss-Bonnet coefficient

c and should in principle be visible in the thermodynamic structure of the dual boundary

theory. Once again the region of metastability is bounded by the MS-curve and the

Cφ-curve and we find that either the larger or smaller black holes can be metastable.

Furthermore, the large metastable black holes that live within the metastable region but

above the MS,S-curve would decay to small black holes with negative entropy. Thus such

large black holes are not truly metastable modes.

It is perhaps amusing that we also find slices of constant φ that cross the global stability

curve at two points. Naively this would seem like the possibility for two Hawking-Page

transitions. It turns out that only one of the Hawking-Page transitions occurs outside

the region of local instability; only the largest black hole configuration can experience a

Hawking-Page transition as the temperature is varied. We also find constant temperature

slices with two black hole solutions. Only the larger one is locally stable and can always

experience a Hawking-Page transition upon varying the temperature. For large values of

φ we find single black hole solutions that are always globally and locally stable and never

cross the F -curve as can be seen from 5(a).

As we push c to slightly more negative values, we find that for any value of φ with

the three black holes these are always globally stable and thus undergo no Hawking-Page

transition. Furthermore, there are regions where the smallest of the three black holes is in

a region of negative entropy so that the metastable phase transition towards these cannot

occur. These configurations are displayed in figure 5(b).

As c is cranked down to even lower values we find that the two smaller black holes

occur in regions of negative entropy and the metastable transitions are lost altogether

as is observed in 6(a). We also find slices of constant φ intersected twice by the same

temperature, corresponding to two black hole solutions. A small subset of these slices

8See [31] for a different interpretation about the negative entropy black holes.
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Figure 6. Thermal structure for k = d − 2, d > 4. The two regions of c displayed are: (a)

− (d−3)(d−4)(2d−3)
4(d−1)(d−2)(2d−5)κ4|Λ| < c < − d(d−3)

4(d−1)(d−2)κ4|Λ| and

(b) − d(d−3)
4(d−1)(d−2)κ4|Λ| < c < − d

4(d−2)κ4|Λ| .
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F
Cφ

Q =02

S

F
Cφ

εT

φ=const

(a) (b)

Figure 7. Thermal structure for k = d − 2, d > 4 The two regions of c displayed are: (a)

− d(d−1)(2d−5)
4(d−2)(d−3)(2d−3)κ4|Λ| < c < − d

4(d−2)κ4|Λ| and (b) c < − d(d−1)(2d−5)
4(d−2)(d−3)(2d−3)κ4|Λ| .

of constant φ encounter the global stability curve at three points. Once again, only the

largest black hole configuration is physical and can experience a Hawking-Page transition.

The other two Hawking-Page transitions would happen in regions where the black hole is

either locally unstable or has a negative entropy and hence are rendered unphysical. These

features are shown in figure 6(a) where the two unphysical Hawking-Page transitions occur

in a region of local instability and figure 6(b) where one of the unphysical Hawking-Page

transitions occurs in a region of negative entropy yet local stability and the other unphysical

Hawking-Page transition occurs in a region of local instability.

We encounter values of c where there are either one or two black hole solutions as seen

in figures 6(b) and 7(a) and 7(b). In figure 7(a) we find that the constant φ slices with two

black holes can cross the global stability curve three times for larger values of φ or once

for smaller values of φ. Once again only the Hawking-Page transition of the largest black
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Figure 8. Thermal structure for k = − (d − 2), d ≥ 4. The two regions of c displayed are: (a)

c < d2+d−8
4(d−1)(d−2)κ4|Λ| and (b) d2+d−8

4(d−1)(d−2)κ4|Λ| < c < d(d+1)
4(d−1)(d−2)κ4|Λ| .

hole is physical. In figure 7(b) there is no unphysical Hawking-Page transition for constant

φ slices with two black holes. The constant φ slices with single black hole solutions either

cross the global stability curve twice for smaller values of φ or never for larger values of φ.

In the case that they cross it twice, only the Hawking-Page transition between the reference

background and the largest black hole configuration is physical.

5.3 k < 0

We now turn our attention to those black holes with hyperbolic horizons. The situation

with c = 0 was studied in [38], where it was found that the black holes are both globally and

locally favored and experience no Hawking-Page phase transition in the grand canonical

ensemble, as we discussed in section 4.1. This result holds for all d ≥ 4.

The case of c > 0 is depicted in figures 8 and 9. The reference background, which

we have chosen to be the neutral extremal black hole, resides at the point RB. The first

situation we encounter is shown in figure 8(a), where we have temperatures with single

black hole solutions. Such black holes can have negative or zero mass only if they reside

within the region bounded by the M -curve. The next situation which is closely related

is given figure 8(b). In this case we still have temperatures corresponding to single black

hole solutions; however, we also encounter the S-curve discriminating those solutions with

negative and positive entropy. This entropy bound, however, does not enclose all the

massless and negative mass modes.

As we increase the Gauss-Bonnet coefficient c we find that the negative entropy bound

has engulfed all the massless and negative mass modes, as seen in figure 9(a). We also

arrive at a similar situation in figure 9(b), where we have temperatures with two black

hole solutions as well as temperatures with single black hole solutions. As is usual the

smaller of the two black holes is always locally unstable as well as having negative entropy,

whereas the larger one is always locally stable. There are no massless modes present with
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Figure 9. Thermal structure for k = − (d − 2), d ≥ 4. The two regions of c displayed are: (a)
d(d+1)

4(d−1)(d−2)κ4|Λ| < c < d(d−1)
4(d−2)(d−3)κ4|Λ| and (b) c > d(d−1)

4(d−2)(d−3)κ4|Λ| .

or without negative entropy in this situation.9

For the case c < 0 we find that there is again a critical value of φ that separates the

phase structure into two regions. The region with small values of φ has temperatures

corresponding to black hole solutions that can have zero, negative or positive mass and the

region with large values of φ where the black holes have positive mass. This situation is

qualitatively equivalent to the one in figure 8(a).

6 Global thermal phase structure for c 6= 0 & ε = 0

6.1 k > 0

d = 4 Spatial Dimensions We begin by summarizing the thermal phase structure in

the φ vs. c plane for d = 4 spatial dimensions. The situation is depicted in figure 10(a) and

a derivation of the curves bounding the various regions is provided in appendix E. There

are three main regions10 denoted by the Roman numerals I, II and III containing one, two

and three black holes respectively. These regions are identified by mapping out the regions

of local instability given by the region within the green curve. Once we have identified

the three main regions we can identify subregions given by the particular properties of

the configurations. These are labeled by the subscripts and superscripts. The subscript

E denotes regions where there are extremal black hole configurations. The subscript E0

denotes regions where the only extremal solutions are ones with vanishing horizon radius.

The subscript S denote regions where there exist configurations with negative entropy.

In S regions, possible extremal black holes always have negative entropy. Finally, the

superscript HP denotes configurations that experience a Hawking-Page transition. The

9One may be interested in possible decays between black holes and the charged extremal black hole

with the same external potential. We find that such decays are only possible when the extremal black hole

possesses negative entropy.
10For convenience we have also included the definitions of the various regions in table 1.
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Figure 10. Thermal phase structure for k > 0 and d = 4.

superscript HP ∗ denotes the region where the Hawking-Page transition for the large black

hole happens in a region of negative entropy. Note that we have metastable black holes

in region III where there are three black hole solutions. Of particular interest is region

III where we have three black hole solutions of which the intermediate one is locally

unstable. The metastable configuration can decay to either the more stable black hole hole

configuration or the reference background.

d > 4 spatial dimensions. We now proceed to the d > 4 case depicted in figure 11.

Once again, the regions of the diagram are obtained explicitly in appendix E. The region

within the shaded box in figure 11 is expanded. Once again the phase diagram is divided

into three main regions I, II and III denoting the number of black hole solutions. These

regions are delineated by the curves of local instability. As before the metastable black

holes are found in region III. Within each main region there are various subregions as

before. We have encountered, however, two new types of subregions. The subscript S∗

denotes a subregion of III where the smallest black holes always have negative entropy.

The subscript HP ∗∗ denotes subregions where we find the lines of constant φ cross the

global stability three times and thus there are two unphysical Hawking-Page transitions.

Of particular interest is the region IIIE,S, where we encounter three globally stable black

hole solutions at a constant temperature. The intermediate sized one is locally unstable.

If we are in the metastable configuration we can have a phase transition to the globally

stable configuration without decaying to the reference background.
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Figure 11. Thermal phase structure for k > 0 and d > 4.

6.2 k < 0

We proceed to study the case with k < 0 which is depicted in figure 12. As before the

explicit regions given in these diagrams are derived in appendix E. There are only two

main regions denoted by I and II, where we have one or two black hole solutions. As

usual, these regions are split into various subregions. A new subregion that we have not

yet encountered is denoted by the subscripts M and M∗, where we find black holes with

vanishing or negative thermodynamic mass. The asterisk in M∗ refers to regions where the

negative or vanishing mass black hole has negative entropy. Finally, we mention that black

holes that are unstable locally occur only in regions of parameter space that are hidden by

the negative entropy bound.

6.3 k = 0

Finally, we visit the k = 0 case which has the simplest thermal structure. Particularly, for

the case of a flat asymptotic geometry in the grand canonical ensemble, we find again the

absence of a Hawking-Page phase transition. This is the same result as that for the c = 0

case and we find that it holds for all values of c.

As a final remark we reiterate here that there is a vastly richer thermal phase structure

for the case of charged black holes with a Gauss-Bonnet term than the usual Hawking-

Page transition between neutral black holes and thermal anti-de Sitter space. There are

configurations with locally unstable black holes which are globally stable as those discovered

in [10, 11], as well as globally unstable yet locally stable configurations. The black holes

we are considering have one more free parameter compared to the neutral black holes

considered in the original work [15]. Thus the free energy is a function of two varying

parameters constrained along slices of constant φ. A metastable black hole can thermally
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Figure 12. Thermal phase structure for k < 0.

I Single black hole for any given temperature.

II Two black holes for any given temperature.

III Three black holes for some temperatures.

HP Physical Hawking-Page transition.

∗ Single unphysical Hawking-Page transition.

∗∗ Two unphysical Hawking-Page transitions.

E Extremal black hole present.

E0 Extremal black hole has vanishing radius.

S Negative entropy modes present.

S∗ Smallest black holes have negative entropy.

M Negative mass modes present.

M∗ All negative mass modes have negative entropy.

Table 1. Definitions of subregions.

evolve to some r∗H , Q∗ configuration that is locally and globally stable. This is particularly

true in the grand canonical ensemble, where the electric potential is kept fixed but not the

electric charge so that the black holes can emit and absorb charged radiation.
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7 Global stability for ε 6= 0 and c = 0

We can now direct our attention to the case of ε 6= 0. Once we obtain the general expressions

for the free energy, specific heats and thermodynamic quantities of the theory, we proceed

to explore thermal phase structure of the F 4 theory with no Gauss-Bonnet term in the

action. Finally, we study the deformations to the thermodynamic structure of the Einstein-

Maxwell-Gauss-Bonnet theory caused by F 4 corrections.

7.1 Computing the free energy

In order to compute the free energy of the ε 6= 0 theory we need to slightly extend the

discussion in section 4.1. In particular, we have to evaluate the full Euclidean action given

by the sum of (4.4) and (4.5). Once again we will be working in the rH , Q parametrization

due to the non-trivial Q dependence of the Euclidean action. The first term in the Euclidean

action becomes:

− F ε
1 − F ε

vac

Σk
= − 2

d − 3

[

1

κ2

(

4πrH
d−1TH − d − 1

d − 2
krH

d−2

)

− µ

2
+

2

d
ΛrH

d

]

, (7.1)

where now TH and µ are considered as functions of rH and Q and furthermore depend

on ε as dictated by (3.18) and (3.19). F ε
vac was defined in (4.9). The second term in the

Euclidean action becomes:

− F ε
2

Σk
=

8ε

d − 3

∫ ∞

rH

drrd−1f(r)4. (7.2)

The above expressions are for general ε and no approximations have been made. We will

perform our analysis numerically using the numerical integration packages contained in

Mathematica [50]. Thus the basic object we will be working with is given by the full

Euclidean action:

Iε
total = Iε

1 + Iε
2 = −β(F ε

1 + F ε
2 ). (7.3)

The reference vacua used to test the global stability of a given black hole solution are once

again those introduced in section 4.1, since once we set Q to zero all ε effects vanish. For

the sake of completeness we include the χ ≪ 1 expansion of the total free energy below:

F ε
1 + F ε

2 =

krd−2
H

(d − 2)κ2
+

Λrd
H

d (d − 1)
− g2Q2

2 (d − 1) rd−2
H

[

1

(d − 2)
− χ

4 (3d − 4)
+ O(χ2)

]

. (7.4)

Furthermore, we include the Hawking temperature expanded to first order in χ:

T ε
H =

1

8π (d − 1)

[

2 (d − 1) k

rH
− 2κ2ΛrH − κ2g2Q2

r2d−3
H

(

1 − χ

2
+ O(χ2)

)

]

. (7.5)
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7.2 Thermodynamic quantities

Having obtained the Euclidean action we can in principle obtain all the thermodynamic

quantities. We must compute the appropriate thermodynamic derivatives given in ap-

pendix C for the rH , Q parametrization. We note, however, that the fixed external electric

potential is modified to the following:

φε(rH , Q) =
1

2g

∫ ∞

rH

drf(r), (7.6)

which in the limit χ ≪ 1 becomes

φε =
gQ

2rd−2
H

[

1

(d − 2)
− χ

(3d − 4)
+ O(χ2)

]

. (7.7)

Even though we are barred from obtaining full analytic expressions, by direct application

of Wald’s formula [51], we expect that the entropy as a function of rH and Q is not affected

by a contribution to the matter Lagrangian. Indeed we can verify this to third order in

χ and numerically for arbitrary values of ε. In fact one can explicitly check that the

thermodynamic electric charge also remains unchanged for non-zero ε. Thus we obtain:

Qε = − 1

βH

(

∂Iε
total

∂φε

)

βH

= Σk × 2gQ, (7.8)

Sε = βH

(

∂Iε
total

∂βH

)

φε

− Iε
total = Σk ×

(

4πrd−1
H

κ2
+ 8πck (d − 1) rd−3

H

)

, (7.9)

We can then use the first law to obtain the thermodynamic energy

Eε =
Iε
total + Sε

βH
+ Qεφε = −Σk × µε(rH , Q). (7.10)

Using the expansion in (3.6) we expand µε in χ ≪ 1:

µε = − 1

κ2

d − 1

d − 2
krH

d−2 − c
(d − 1) (d − 3)

d − 2
k2rH

d−4

+
Λ

d
rH

d − g2Q2

2(d − 2)rd−2

[

1 +
(d − 2)

2(4 − 3d)
χ + O(χ2)

]

. (7.11)

7.3 Hawking-Page transitions

In principle we would like to obtain the analytic quantities for the critical parameters that

dictate the Hawking-Page transitions. We can achieve this by expressing Iε
total in terms of

our two free parameters rH and Q and solving Iε
total = 0. This is only possible numerically

for arbitrary values of ε although one can obtain analytic expressions upon expanding in

χ, which are given below:

(Qε
c)

2 = Q2
c

[

1 +
(d − 2)

2(3d − 4)
χc + O

(

χ2
c

)

]

, (7.12)

(Qε
M=0)

2 = Q2
M=0

[

1 +
(d − 2)

2(3d − 4)
χM=0 + O

(

χ2
M=0

)

]

, (7.13)

(Qε
TH=0)

2 = Q2
TH=0

[

1 +
χTH=0

2
+ O

(

χ2
TH=0

)

]

(7.14)
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where Q2
c , Q2

M=0 and Q2
TH=0 are given in (4.18), (4.19) and (4.20) respectively where

we set c = 0. We have also defined the unitless parameter χx ≡ (8g6Q2
xε)/r

2(d−1)
H , where

x = {c, TH = 0,M = 0}. Black holes with Q > Qε
c are thermodynamically favored, massless

black holes have Q = Qε
M=0 and positive temperature black holes satisfy Q ≤ Qε

TH=0.

8 Local stability

To test the local thermodynamic stability for non-zero ε we must obtain the specific heat,

Cφ, and the isothermal electrical permittivity, εT , of our solutions. These quantities are

defined by equations (5.3) and (5.4). Analytic expressions for Cφ and εT can be obtained

only upon expansion in ε and we will treat them on the same numerical footing as every-

thing else. For completeness, however, we include the expansions for the local equilibrium

parameters below:

Cφ

Σk
= −

4π d−1
κ2

(

2d−1
κ2 kr2

H − 2Λr4
H − g2Q2

r
2(d−3)
H

)

rd−1
H

2d−1
κ2 kr2

H + 2Λr4
H − g2Q2

r
2(d−3)
H

−
4π (d−1)(d−4)

κ2
g2Q2

r
2(d−3)
H

(

2d−1
κ2 kr2

H + 4 d
d−4Λr4

H − g2Q2

r
2(d−3)
H

)

rd−1
H

(3d − 4)

(

2d−1
κ2 kr2

H + 2Λr4
H − g2Q2

r
2(d−3)
H

)2 χ + O(χ2). (8.1)

Having obtained all the basic global and local thermodynamic quantities, we can begin

exploring the various regions of the parameter space. Our approach will consist of first

exploring the thermal phase structure for the theory with only an F 4 correction and no

Gauss-Bonnet term. Once we identify the relevant qualitative regions of the ε − φε plane

with c = 0, we will proceed to explore how the F 4 term deforms the various qualitative

regions we found in the previous section for the ε = 0 case.

8.1 k > 0

We begin by exploring the ε > 0 case, for d ≥ 3, depicted in figure 13. For large enough

values of φε, we find that there is only one black hole which is always globally and locally

favored and undergoes no Hawking-Page transition. As we decrease the value of φε, we

encounter constant φε slices with three black hole solutions. Of the three black holes the

medium sized one is always locally unstable, whereas the largest one can experience a

Hawking-Page transition. The smallest black hole is always globally favored and it cannot

reach the global stability curve via a continuous change in the temperature without first

crossing the local instability curve. Interestingly we find temperatures where two of the

three black hole solutions are globally favored and separated by an intermediate black hole

which is both locally and globally unstable. For such situations we can conceive of a phase

transition from the least to most globally stable configuration. We also find temperatures

where all three black hole solutions are globally favored although as always the intermediate

one is locally unstable. A similar phase transition should happen for such situations. The
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T =0H

φ=const
F
Cφ

εT

MS

φ=const

F
Cφ

εT

MS

Q =02

(a) (b)

Figure 13. Thermal structure for k > 0, d ≥ 3 and ε > ε+
2 in both the rH , Q plane (a) and the

rH , TH plane (b).

T =constH

T =0H

φ=const
F
Cφ

εT

ε-bound

T =constH

ε-bound

φ=const
F
Cφ

εT

(a) (b)

Figure 14. Thermal structure for k > 0, d ≥ 3 and (a) ε+
1 < ε < ε+

2 , (b) ε < ε+
1 .

metastable black hole is qualitatively similar to the one we found in the c < 0, k > 0 case

for d > 4 with ε = 0. The local electrical stability curve is always hidden within the local

thermal instability region, as was the case for the c 6= 0, ε = 0 black hole. This is in fact a

common feature for all values of ε and k both positive and negative.

For the ε < 0 case, with d ≥ 3, depicted in figure 14(a) and (b), we find constant

φε slices containing one or two black hole solutions. For large enough values of φε we

find a single black hole solution that is globally favored and undergoes no Hawking-Page

transition. Lowering the value of φε we find that the single black hole solution has access

to Hawking-Page transitions. Finally, for small enough values of φε we have two black hole

solutions for which the larger one experiences Hawking-Page transitions and the smaller is

always locally unstable. We find that all extremal black hole solutions disappear after a

critical ε < 0 due to the bound on the minimum allowed horizon radius (2.19) depicted by

the ε-bound-curve in figure 14(b). This bound also reduces the region of allowed Hawking-

Page transitions as ε → −∞.
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T =constH

T =0H

φ=const
M

Figure 15. Thermal structure for k < 0, d ≥ 3 and ε > ε−2 .

T =constH

T =0H

φ=const
M
ε-bound

T =constH

T =0H

φ=const
M
ε-bound

(a) (b)

Figure 16. Thermal structure for k < 0, d ≥ 3 and (a) ε−1 < ε < ε−2 , (b) ε < ε−1 .

8.2 k ≤ 0

The case for ε > 0, with d ≥ 3, shown in figure 15 constitutes of a single black hole solution

which may be extremal, that is always globally and locally stable and never undergoes a

Hawking-Page transition. A similar situation holds for ε < 0 displayed in figures 16(a)

and (b), except that there is a further constraint due to the bound (2.19) that eliminates

extremal solutions for large enough φε. Finally, for the k = 0 case there is as usual no rich

thermodynamic structure.

9 Global thermal phase structure for ε 6= 0 & c = 0

Let us summarize the results for ε 6= 0 and c = 0 with the global thermal phase diagrams

in the ε − (φε)−2 plane.

9.1 k > 0

We begin by examining the case with k > 0 depicted in figure 17. Notice that we have

expressed the thermal phase structure in the ε− (φε)−2 plane, so that large potentials are
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Figure 17. Thermal phase structure for k > 0.

in the lower part of the diagram. The phase diagram is separated into three main regions

with one or three black hole solutions and denoted by I, II and III respectively. The

expressions for the curves bounding the various regions are provided in appendix E. Of

particular interest is region III where we encounter the possibility of three globally favored

black holes leading to phase transitions between the least thermally favored to the most

thermally favored. This situation is qualitatively the same as the one we studied in the

c < 0, ε = 0, k > 0 case for d > 4 spatial dimensions. However, it is a new phenomenon

in d = 4 spatial dimensions, since in the c > 0, ε = 0, k > 0 case the smallest black hole

always has a higher free energy than the reference background.

9.2 k < 0

The case with k < 0 given in figure 18 is much simpler. There is only one main region

containing single black holes and denoted by I. We find subregions with extremal black

holes and or massless and negative mass black holes.

10 Metastability

10.1 Gauss-Bonnet

We now discuss the various metastable configurations we have encountered throughout the

analysis. We begin with the ε = 0 case depicted in figure 19. The results are expressed as

constant φ slices in the F −TH plane. The locally unstable black hole is always depicted by

the dashed curve connecting the small and large black hole curves. The d = 4 case, shown
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Figure 18. Thermal phase structure for k < 0.

in figure 19(a), clearly shows that one of the black holes is always globally unstable and

corresponds to region IIIHP
E0 in figure 10(a). Thus the metastable black hole has two decay

channels; the reference background or the thermally favored black hole. Figures 19(b), (c)

and (d) are the various situations we encounter in the d > 4 case. The black holes have

negative entropy to the left of the black dot. In figure 19(b) we find configurations with

two decay channels as well as a single decay channel corresponding to regions IIIHP ∗

E,S and

IIIHP ∗

E,S,S∗ of figure 10(b). In figure 19 (c) and (d) we have a single decay channel since the

metastable black hole has lower free energy than the reference background. Thus these

metastable configurations are found in regions IIIE,S and IIIE,S,S∗ of figure 10(b).

10.2 F 4

The c = 0 situation is depicted in figure 20. We find configurations where the metastable

black hole can decay to either the reference background or the favored black hole corre-

sponding to region IIIHP ∗

E in figure 17, or configurations where the metastable black hole

has a single decay channel to the globally favored black hole corresponding to region IIIE

in figure 17.

11 F 4 deformations of Gauss-Bonnet thermodynamics

Our remaining task is to explore how the interesting phenomena we found in the thermal

phase structure of the Gauss-Bonnet black hole are deformed by turning on the ε coeffi-
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r increasesH

φ increases

S=0

r increasesH

φ increases

(a) (b)

S=0

r increasesH

φ increases

S=0

r increasesH

φ increases

(c) (d)

Figure 19. Metastability for c 6= 0, ε = 0 with (a) d = 4 and (b), (c) and (d) d > 4.

r increasesH

φ increases

Figure 20. Metastability for ε 6= 0, c = 0.

cient. Our analysis is by no means exhaustive of all possible cases; however, various new

phenomena are uncovered when the ε coupling is of comparable order to the c coupling.

11.1 d = 4 spatial dimensions with ε > 0 and c > 0

We begin with the c, ε > 0 case with four spatial dimensions. Upon deforming the regions

of c with three black hole solutions by turning on the ε, we find that temperatures for which
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Figure 21. Thermal structure for k = 2, d = 4 and c = 1
50κ4|Λ| , ε = 1

5g4|Λ| (a) and the relevant

metastability curves (b).

the two locally stable modes can in fact become globally stable. This situation differs from

the ε = 0 case where the smaller locally stable black hole was always thermally unfavored

with respect to the thermal anti-de Sitter vacuum.

We also find constant φ slices that intersect the global stability curve at three points.

Of the three intersection points, one is always within the region of local instability. In-

terestingly we find that for the other two points the Hawking-Page transition occurs in a

physical region of parameter space. This differs from our previous encounter of such mul-

tiple Hawking-Page transitions, which always occurred in unphysical regions. We depict

the situation in figures 21(a) and (b). Notice that we if we begin in a globally stable black

hole configuration and continuously decrease the temperature the system will only ever

experience a single Hawking-Page transition, since the two regions where Hawking-Page

transitions are available are separated by a region of local instability. The constant φ slices

in the F − TH plane are observed in figure 21 it is clear that for some slices both the large

and small black hole can experience a Hawking-Page transition.

11.2 d > 4 spatial dimensions with ε > 0 and c > 0

For the c > 0, ε > 0 case with five or more spatial dimensions, depicted in figure 22, we

find temperatures intersecting the constant φ slices four times, corresponding to four black

hole solutions at a given temperature. Though novel, the smallest black hole has negative

specific heat in accordance to our general argumentation. Furthermore, constant φ slices

that have two regions with physical Hawking-Page transitions. These regions are separated

by a region of local instability so one cannot have two consecutive phase transitions as we

continuously lower the temperature from the globally favored large black hole configuration.

We see that phase transitions at constant temperatures between two globally favored black

hole states occur for c > 0 in d ≥ 5 dimensions with positive ε switched on. Such phase

transitions were only visible for c < 0 in the pure Gauss-Bonnet case.
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Figure 22. Thermal structure for k = 3, d = 5 and c = 1
50κ4|Λ| , ε = 1
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F
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Figure 23. Thermal structure for k = 2, d = 4 and c = − 1
50κ4|Λ| , ε = 1

5g4|Λ| .

11.3 d = 4 spatial dimensions with ε > 0 and c < 0

The c < 0, ε > 0 situation for d = 4 spatial dimensions is given in figure 23. The situation

is qualitatively identical to the c < 0 case with d ≥ 5 uncovered in the pure Gauss-Bonnet

theory and shown in figures 5(a) and (b). There are constant φ slices with three black

hole solutions at a given temperature of which the smaller and larger may be globally

favored over the thermal anti-de Sitter vacuum. We simply note that this situation had

not been observed for the pure Gauss-Bonnet case with c < 0 and d = 4. No secondary

Hawking-Page transitions are observed in this case.

12 Discussion and summary of Results

We have uncovered various novel features in the thermal phase structure of both the Gauss-

Bonnet black hole with no F 4 corrections and the Gauss-Bonnet-F 4 black hole. Our results

are contained in the global phase structure figures 10, 11 and 12 for pure Gauss-Bonnet

corrections, and in figures 17 and 18 for pure F 4 corrections. In section 11 we discus

the case with both couplings turned on. We have mapped out various regions of physical
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4

ε>
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Figure 24. All possible physical phase transitions in the Gauss-Bonnet-F 4 theory. SBH denotes

the small locally stable black hole, BBH denotes the large locally stable black hole, TAdS denotes

thermal anti-de Sitter space, and HP denotes an accessible Hawking-Page transition.

interest within the phase diagrams, such as regions containing extremal black holes, regions

including massless and negative mass modes, and regions with negative entropy modes. We

depict all possible phase transitions between locally stable black holes and/or thermal anti-

de Sitter space in figure 24.

For the pure Gauss-Bonnet case we have discovered new metastable modes for k > 0

and c < 0 in d ≥ 5 spatial dimensions, as depicted in figures 19(b), (c) and (d). More

specifically, we find temperatures at a constant electric potential with three black hole

solutions, of which the intermediate sized one is locally unstable. The smaller black hole

is an O(α′) effect and thus its size is also of order
√

α′. The larger black hole has a size

of the order of the anti-de Sitter length. These modes have the interesting property that

for certain values of the electric potential, they may both be thermally favored over the

thermal anti-de Sitter vacuum at a fixed temperature. This differs from the situation in

d = 4 spacetime dimensions [27], shown in figure 19(a), where one of the metastable modes

is always thermally unfavored with respect to the thermal anti-de Sitter vacuum. It may

be somewhat alarming that the effect occurs for c < 0; however, from a purely effective

field theory point of view, we must take these effects seriously, unless there is evidence

that this is an unphysical region of parameter space (see [52, 53] for a relevant discussion

for the neutral case). It would be very interesting to understand the dual field theory

interpretation of these metastable modes given that the phase transition occurs between

two states in the deconfined phase.

Another curious feature we uncover is the existence of constant electric potential slices

that intersect the free energy curve more than once. Such a scenario would imply that

as one lowers the temperature, the large hot black hole decays into thermal anti-de Sitter

space, and the thermal anti-de Sitter space itself eventually collapses into a black hole at

even lower temperatures. This, however, is not the case, since the secondary Hawking-
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Page transitions always occur in either a region of local instability or a region of negative

entropy, and are thus unphysical.

For the pure F 4 case, which has not been previously explored, we uncover additional

metastable modes for d ≥ 3, k > 0 and ε > 0. Once again, they consist of three black hole

solutions, of which the intermediate sized one is locally unstable. Furthermore, we find

that for certain values of the potential, both locally stable modes are thermally favored

over the thermal anti-de Sitter at a fixed temperature, as depicted in figure 20, and thus

they are both states in the deconfined phase of the dual theory. This feature persists for

d = 3 spatial dimensions when there is no Gauss-Bonnet correction present. Once again,

any secondary Hawking-Page transitions observed occur in unphysical regions of parameter

space.

Finally, we study the thermodynamics of our theory with both couplings turned on in

section 11. For d = 4 and both couplings positive, we uncover constant φ slices allowing

for three black holes at a constant temperature, of which the smallest and largest may be

globally favored. Furthermore, the secondary Hawking-Page transition becomes physical;

thus, for a slice of constant φ there are two disjoint Hawking-Page transitions that can

occur — starting from either the small or large black hole.

For d ≥ 5 there are temperatures with four black hole solutions for a constant φ,

indicating the existence of a fourth locally unstable black. Furthermore, the secondary

Hawking-Page transition for the small black hole is still present. It is of great interest to

find a clear interpretation of the additional Hawking-Page transition from the point of view

of the dual theory. Naively, it would seem that there are two disconnected deconfined phases

at different temperatures that can experience a Hawking-Page transition to a confined phase

as we continuously lower the temperature. However, such phenomena deserve a complete

treatment in their own right.

We reiterate that a qualitative change in the tree level thermal phase structure arising

from O(α′) corrections may imply that we must take into account all higher order cor-

rections to get the correct physical picture. However, it has been possible to match the

Gauss-Bonnet effects in d = 4 with the thermal phase structure of a phenomenological dual

matrix model [26, 27] with no F 4 corrections. This observation leads us to expect that

a similar situation occurs for the thermal phase structure we have uncovered. It would

be worth further studying this issue by obtaining the thermal phase structure of effective

gravitational actions with even higher order corrections, even though it may be a rather

challenging task.

One important question that we have left for future work is to study these effects

from the point of view of the dual theory. Of course, this theory will be strongly coupled,

and for general dimensions it is not clear what the precise dual theory even is. We can,

however, construct phenomenological dual matrix models along the lines of [23, 24, 26, 27]

and compare the various phase structures of the bulk theories that we have uncovered with

those of the dual matrix models. It is also of interest to perform our analysis in the canonical

ensemble where the charge, rather than the electric potential, is held fixed. In this case,

the reference background will no longer be thermal anti-de Sitter space, but an extremal

black hole. Since we have uncovered new black hole solutions, it is important to study
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their dynamical stability with respect to small perturbations and see whether the regions

of negative specific heat and dynamical instability coincide [52, 54–57]. Finally, there has

been a recent interest in higher derivative corrections to the shear viscosity bound and the

Gauss-Bonnet-F 4 black hole, and further higher derivative corrections thereof (particularly

RF 2 terms) may be of interest to this story [58–61].
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A Equations of motion

Gauss-Bonnet gravity. The general action of R2 gravity with matter is given by:

I =

∫

dd+1x
√−g

(

1

κ2
R − Λ + aR2 + bRµνR

µν + cRµνρσRµνρσ

)

+ Imatter. (A.1)

We are particularly interested in the Gauss-Bonnet combination,

a = c, b = −4c. (A.2)

The equations of motion for the Gauss-Bonnet combination are given by:

Tµν = −1

2
gµν

(

1

κ2
R − Λ + c

(

R2 − 4RµνRµν + RµνρσRµνρσ
)

)

+
1

κ2
Rµν

+ c
(

2RRµν − 4RµρR
ρ
ν − 4RµρνσRρσ + 2Rλρσ

µ Rνλρσ

)

. (A.3)

B Useful intermediate results

In order to make life simpler for one to verify the equations of motion with our ansatz, we

give some of the intermediate steps of the calculation.

Christoffel symbols. The nonzero Christoffel symbols obtained from our ansatz are:

Γt
rt = ν ′, Γr

tt = −ν ′e2(ν−λ),

Γr
rr = λ′, Γr

ij = −re−2λg̃ij ,

Γi
jr =

δi
j

r
, Γi

jk = Γ̃i
jk.

(B.1)

Curvature tensors The nonzero elements of the Riemann tensor:

Rtrtr = −e2νRt
rtr = e2ν

(

ν ′′ − λ′ν ′ + ν ′2
)

Rtitj = −e2νRt
itj = rν ′e2(ν−λ)g̃ij

Rrirj = rλ′g̃ij

Rijkl = r2R̃ijkl − r2e−2λ (g̃ikg̃jl − g̃ilg̃jk) .

(B.2)
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The elements of the Ricci tensor are:

Rrr = −
(

ν ′′ − λ′ν ′ + ν ′2
)

+
(d − 1) λ′

r

Rtt = e2(ν−λ)

(

ν ′′ − λ′ν ′ + ν ′2 +
(d − 1) ν ′

r

)

Rij =
{

k − e−2λ
[

r
(

ν ′ − λ′
)

+ d − 2
]

}

g̃ij.

(B.3)

Finally, the Ricci scalar is given by:

R = −e−2λ

(

2
(

ν ′′ − λ′ν ′ + ν ′2
)

+
2 (d − 1) (ν ′ − λ′)

r
+

(d − 1) (d − 2)

r2

)

+
(d − 1) k

r2
. (B.4)

Gauss-Bonnet terms. We list various relevant contractions for the various derivations.

Quantities in the Action:

RµνR
µν = e−4λ

[

2
(

ν ′′ − λ′ν ′ + ν ′2
)2

+ 2 (d − 1)
(

ν ′′ − λ′ν ′ + ν ′2
) (ν ′ − λ′)

r

+
(d − 1)2

(

ν ′2 + λ′2
)

r2

]

+
(d − 1)

r4

(

k − e−2λ
[

r
(

ν ′ − λ′
)

+ (d − 2)
]

)2
(B.5)

RµνλρR
µνλρ = 4e−4λ

(

ν ′′ − λ′ν ′ + ν ′2
)2

+ 4 (d − 1) e−4λ λ′2 + ν ′2

r2

+
2 (d − 1) (d − 2)

r4

(

k

d − 2
− e−2λ

)2

(B.6)

R2 − 4RµνRµν + RµνλρR
µνλρ = (d − 1)

{

(d − 3) (d − 4) k2

(d − 2) r4

+ e−2λ

[

−4
k
(

ν ′′ − λ′ν ′ + ν ′2
)

r2
− 4

(d − 3) k (ν ′ − λ′)

r3
− 2

(d − 3) (d − 4) k

r4

]

+ (d − 2) e−4λ

[

4
(

ν ′′ + ν ′2 − 3λ′ν ′
)

r2
+4

(d − 3) (ν ′ − λ′)

r3
+

(d − 3) (d − 4)

r4

]}

. (B.7)

Rµ
ρR

νρ non-vanishing terms:

Rt
ρR

tρ = −e−2ν−4λ

(

ν ′′ − λ′ν ′ + ν ′2 +
(d − 1) ν ′

r

)2

(B.8)

Rr
ρR

rρ = e−6λ

(

−
(

ν ′′ − λ′ν ′ + ν ′2
)

+
(d − 1) λ′

r

)2

(B.9)
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Ri
ρR

jρ =
1

r6

[

k2 − 2e−2λk
(

r
(

ν ′ − λ′
)

+ (d − 2)
)

+e−4λ
(

r2
(

ν ′ − λ′
)2

+ 2 (d − 2) r
(

ν ′ − λ′
)

+ (d − 2)2
)]

g̃ij . (B.10)

RµρνσRρσ non-vanishing terms:

RtµtνRµν = (d − 1) e−2ν−4λ

[

−
(

ν ′′ − λ′ν ′ + ν ′2
)2

(d − 1)
+

λ′
(

ν ′′ − λ′ν ′ + ν ′2
)

r

−ν ′ (ν ′ − λ′)

r2
− (d − 2) ν ′

r3
+ e2λ kν ′

r3

]

(B.11)

RrµrνRµν = (d − 1) e−6λ

[

(

ν ′′ − λ′ν ′ + ν ′2
)2

(d − 1)
+

ν ′
(

ν ′′ − λ′ν ′ + ν ′2
)

r

−λ′ (ν ′ − λ′)

r2
− (d − 2)λ′

r3
+ e2λ kλ′

r3

]

(B.12)

RiµjνRµν =
e−4λ

r3

[

(

ν ′′ − λ′ν ′ + ν ′2
) (

ν ′ − λ′
)

+
(d − 1)

(

ν ′2 + λ′2
)

r

+
(d − 2) (ν ′ − λ′)

r2
+

(d − 2)2

r3

]

g̃ij − e−2λ

r6
k
(

r
(

ν ′ − λ′
)

+ 2 (d − 2)
)

g̃ij +
k2

r6
g̃ij . (B.13)

Rµ
κλρR

νκλρ non-vanishing terms:

Rt
µνρR

tµνρ = −2e−2ν−4λ

(

(

ν ′′ − λ′ν ′ + ν ′2
)2

+
(d − 1) ν ′2

r2

)

(B.14)

Rr
µνρR

rµνρ = 2e−6λ

(

(

ν ′′ − λ′ν ′ + ν ′2
)2

+
(d − 1)λ′2

r2

)

(B.15)

Ri
µνρR

jµνρ =
2e−4λ

(

ν ′2 + λ′2
)

r4
g̃ij +

2

r6

(

k

d − 2
− e−2λ

)2

(d − 2) g̃ij . (B.16)

Electromagnetic intermediate quantities. We give some intermediate steps in the

calculation of the matter energy tensor and the solution of the Maxwell equations:

FµνFµν = −2f (r)2 (B.17)

FµνFνλF λρFρµ = 2f (r)4

Fµ
tFµt = e−2νf (r)2 (B.18)

Fµ
rFµr = −e−2λf (r)2

F tρFρσF στFτ
t = −e−2νf (r)4 (B.19)

F tρFρσF στFτ
t = e−2λf (r)4

F tµFµνF νr = e−(ν+λ)f (r)3 (B.20)

All other relevant terms are vanishing.
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C Thermodynamic derivatives

In this appendix we present the thermodynamic derivatives that allow us to compute the

thermodynamic charge, entropy and mass used throughout the paper. Let us begin with

the expressions in the rH , Q parametrization. For the grand canonical ensemble we used

that:

Q = − 1

β















(

∂I
∂rH

)

Q

(

∂φ
∂rH

)

Q
−
(

∂φ
∂Q

)

rH

“

∂β
∂rH

”

Q
“

∂β
∂Q

”

rH

+

(

∂I
∂Q

)

rH

(

∂φ
∂Q

)

rH

−
(

∂φ
∂rH

)

Q

“

∂β
∂Q

”

rH
“

∂β
∂rH

”

Q















, (C.1)

S = β















(

∂I
∂rH

)

Q

(

∂β
∂rH

)

q
−
(

∂β
∂Q

)

rH

“

∂φ
∂rH

”

Q
“

∂φ
∂Q

”

rH

+

(

∂I
∂Q

)

rH

(

∂β
∂Q

)

rH

−
(

∂β
∂rH

)

Q

“

∂φ
∂Q

”

rH
“

∂φ
∂rH

”

Q















− I, (C.2)

E =
I + S

β
+ Qφ. (C.3)

The expressions for the specific heat and electrical permittivity are given by:

Cφ = TH

(

∂S

∂TH

)

φ

= TH

dS
drH

(

∂TH
∂rH

)

Q
−
(

∂TH
∂Q

)

rH

“

∂φ
∂rH

”

Q
“

∂φ
∂Q

”

rH

(C.4)

and

εT =

(

∂Q

∂φ

)

TH

=
1

(

∂φ
∂Q

)

rH

−
(

∂φ
∂rH

)

Q

“

∂TH
∂Q

”

rH
“

∂TH
∂rH

”

Q

. (C.5)

The above expressions can also be obtained in the rH , TH parametrization for which we

have provided an thermodynamic analysis for the ε = 0 case in appendix D:

Q = −TH

(

∂I
∂rH

)

TH
(

∂φ
∂TH

)

rH

, (C.6)

S = −TH







(

∂I

∂TH

)

rH

−
(

∂I

∂rH

)

TH

(

∂φ
∂TH

)

rH
(

∂φ
∂rH

)

TH






− I, (C.7)

E =
I + S

β
+ Qφ. (C.8)
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Furthermore, we provide the expressions for the specific heat and isothermal electric per-

mittivity in the rH , TH parametrization:

Cφ = TH

(

∂S

∂TH

)

φ

= −TH
dS

drH

(

∂φ
∂TH

)

rH
(

∂φ
∂rH

)

TH

, (C.9)

εT =

(

∂Q

∂φ

)

TH

=

(

∂Q
∂rH

)

TH
(

∂φ
∂rH

)

TH

. (C.10)

D The ε = 0 case in rH, TH parametrization

Even though we discussed throughout the text the practical usefulness of the rH , Q

parametrization in analyzing the thermodynamics for non-zero ε due to the highly non-

trivial dependence on Q in our expressions, this is not the case when ε = 0. It turns out

that the analytic expressions we can obtain in this case are much simpler in the rH , TH

parametrization for ε = 0 and it is instructive to include the main results for the global

and local thermodynamics. We note that the analysis in this parametrization for ǫ = 0 has

been performed in [27, 31]. This provides us with a non-trivial check of our interpretations

of the ε = 0 analysis and further support for our interpretation of the ε 6= 0 results.

First we need to solve for µ and Q in terms of rH and TH . We get:

µ = − 1

d − 2

{

2
(d − 1) krH

d−2

κ2
+ 2

(d − 3) Dk2rH
d−4

(d − 2)2
− 2

(d − 1)Λ

d
rH

d

−4πTH

[

(d − 1) rH
d−1

κ2
+

2kDrH
d−3

d − 2

]}

, (D.1)

Q2 =
2rd−2

H

g2

{

(d − 1) krH
d−2

κ2
+

(d − 4)Dk2rH
d−4

(d − 2)2
− ΛrH

d

−4πTH

[

(d − 1) rH
d−1

κ2
+

2kDrH
d−3

d − 2

]}

. (D.2)

We find that the condition for a massless black hole can be written as:

TM=0
H =

− (d − 2)κ2Λr4
H + d (d − 2) kr2

H + d (d − 3)2 ck2κ2

2πd (d − 2)
[

r3
H + 2 (d − 3) ckκ2rH

] . (D.3)

One important thing here is that we need to ensure that Q2 is always positive, so that the

charge that enters our Lagrangian is real. In the rH , Q parametrization this was trivial;

however, now it is not. The payback in our parametrization is that the extremality bound

has become trivial. We find that TH needs to satisfy:

TH ≤ − (d − 2)κ2Λr4
H + (d − 1) (d − 2) kr2

H + (d − 1) (d − 3) (d − 4) ck2κ2

4π (d − 1) (d − 2)
[

r3
H + 2 (d − 3) ckκ2rH

] . (D.4)
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Finally, we substitute µ and Q in the free energy to find:

F =
2

(d − 2)

[(

Λ

d
rd
H +

(d − 1) (d − 3) k2crd−4
H

(d − 2)

)

+4πTH

(

rd−1
H

2κ2
− kc (d − 1) rd−3

H

)]

, (D.5)

from which we can obtain the following critical temperature:

Tc = − 1

4π

Λ
d r4

H + (d−1)(d−3)k2c
d−2

r3
H

2κ2 − kc (d − 1) rH

. (D.6)

Finally, we provide the expressions for the specific heat and isothermal electrical permit-

tivity of our system. The thermodynamic derivative expressions for these quantities are

given in appendix C. The specific heat at constant electric potential is given by:

Cφ

Σk
= − 8π2 (d − 1)2 rd−2

H TH

(

r2
H + 2c (d − 3) kκ2

)2

κ2
[

2 (d − 1)πrHTH

(

r2
H − 2c (d − 3) kκ2

)

+ κ2
(

c (d−1)(d−3)(d−4)
d−2 k2 + Λr4

H

)] .

(D.7)

The electrical permittivity at constant temperature is given by:

εT

Σk
=

g

2 (d − 2) rd−2
H

×
2πrH

(

r2 − k̃
)

+ T
(

1
2k d−4

d−2 k̃ + κ2 Λ
d−1r4

H

)

2πrH

(

(2d − 3) r2
H + (2d − 5) k̃

)

− T
(

k
(

(d − 2) r2
H + (d−3)(d−4)

2(d−2) k̃
)

− κ2Λr4
H

) . (D.8)

The above expressions give rise to critical temperatures for the thermal and electrical local

stability of our thermodynamic system. The critical temperatures indicate a change in sign

of the specific heat and electrical permittivity and thus a change in stability. The critical

temperature for thermal stability is given by:

TCφ
= κ2

c(d−1)(d−3)(d−4)
d−2 k2 + Λr4

H

2π (d − 1)
(

r2
H − 2 (d − 3) ckκ2

)

rH
. (D.9)

The critical temperature for electrical stability is given by:

T (1)
εφ

= κ2
c(d−1)(d−3)(d−4)

d−2 k2 + Λr4
H

2π (d − 1)
(

r2
H − 2 (d − 3) ckκ2

)

rH
, (D.10)

T (2)
εφ

=

(d−1)k
κ2 r2

H + c(d−3)2(d−4)
d−2 k2 − Λr4

H

2πrH

(

2d−3
κ2 r2

H + 2 (d − 3) (2d − 5) ck
) . (D.11)

Finally, we give the diagrams corresponding to those discussed in section 5.

– 47 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
0

Q =02

φ=const

F

Cφ

εT

MS
Q =02

φ=const

F

(a) (b)

Figure 25. Thermal structure for k = 2, d = 4 and (a) c < 1
6κ4|Λ| , (b) c > 1

6κ4|Λ| .

Q =02

φ=const

M
Q =02

φ=const

M
S

(a) (b)

Figure 26. Thermal structure for d ≥ 4, k = − (d − 2). The two regions of c displayed are: (a)

c < d2+d−8
4(d−1)(d−2)κ4|Λ| and (b) d2+d−8

4(d−1)(d−2)κ4|Λ| < c < d(d+1)
4(d−1)(d−2)κ4|Λ| .

Q =02

φ=const

M
S

Q =02

S

Cφ

εT

φ=const

(a) (b)

Figure 27. Thermal structure for d ≥ 4, k = − (d − 2). The two regions of c displayed are: (a)
d(d+1)

4(d−1)(d−2)κ4|Λ| < c < d(d−1)
4(d−2)(d−3)κ4|Λ| and (b) c > d(d−1)

4(d−2)(d−3)κ4|Λ| .
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E Explicit regions

E.1 c-φ2 plane

Before proceeding to calculate the form of the curves separating regions with qualitatively

different behavior in the c-φ2 plane, it is useful to write down the temperature as function

of the horizon radius and the electrostatic potential, thus making it simple to have the

form of a constant φ slice in the rH , TH plane. Using equations (4.10) and (4.16) we easily

find that:

T (rH , φ) =
κ2
(

d−1
κ2 kr2

H + c (d−1)(d−3)(d−4)
d−2 k2 − Λr4

H − 2 (d − 2)2 r2
Hφ2

)

4π (d − 1) rH

(

r2
H + 2 (d − 3) ckκ2

) . (E.1)

k > 0. First of all, let’s study the region c > 0. We can see in figures 2(a), (b) and 4,

that a constant φ curve does not cross the F -curve if φ > φ0, where φ0 is the potential

for the curve that incudes the extremal black hole with vanishing free energy. So requiring

that Tc (rE,F=0) = 0 we can find the radius of this black hole:

r4
E,F=0 = −d (d − 1) (d − 3) ck2

(d − 2)Λ
. (E.2)

So solving T (rE,F=0, φ0) = 0 we get:

φ2
0 =

(d − 1) k

2 (d − 2)2 κ2
+

√

(d − 1) (d − 3)

d (d − 2)3
k
√
−cΛ. (E.3)

The above curve obviously crosses the φ axis at φ2
0 = (d−1)k

2(d−2)2κ2
. Notice that for d > 4 a

constant φ curve with φ > φ0, has two disconnected branches, one where the free energy

is always positive, and one where the free energy is always negative, while for d = 4 there

is only one branch where the free energy is always negative.

Let’s now study the temperature behavior as function of the potential. We can see in

figures 2(a), (b) and 4, that all curves with φ > φ0, where φ0 is some critical potential,

contain extremal black holes of finite size. Actually, for d = 4 these curves contain exactly

one extremal black hole, while for d > 4 they contain two. These two can be either both

globally unstable, or one stable (the larger one) and one unstable. In order to specify this

critical φ0, we need to find the radii of the extremal black holes solving T (rH , φ) = 0. This

can be written as:

− Λr4
H +

(

(d − 1) k

κ2
− 2 (d − 2)2 φ2

)

r2
H +

(d − 1) (d − 3) (d − 4)

d − 2
ck2 = 0. (E.4)

This is just a quadratic equation for r2
H . We can always check if there are real roots using

the discriminant. Obviously φ0 is the potential that sets the discriminant equal to zero.

That leads us to:

φ2
0 =

(d − 1) k

2 (d − 2)2 κ2
+

√

(d − 1) (d − 3) (d − 4)

d (d − 2)5
k
√
−cΛ. (E.5)
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Notice that if there are real roots, then they are both positive, as we noticed in figure 4.

Notice also that for d = 4, the above curve reduces to a constant φ curve. Finally, it crosses

the φ axis at the same point as the previous curve.

Let’s now consider the region c < 0. Observing figures 3, 5(a) and (b), 6(a) and (b)

and 7, we see that a constant φ curve enters the negative entropy region, if φ < φ0 where

φ0 is the potential for the curve that contains the extremal black hole with zero entropy.

From equation (4.14), we know that for ck < 0 all black holes with vanishing entropy have

horizon radius:

rS=0 =
√

−2 (d − 1) ckκ2. (E.6)

So requiring TH (rS=0, φ0) = 0 we find that φ0 equals:

φ2
0 =

k

4 (d − 2)3 κ2

(

d2 + d − 8 + 4 (d − 1) (d − 2) cκ4Λ
)

. (E.7)

Now in order to check whether a constant φ curve crosses the local stability curve, first

we check the behavior of the temperature as r → rmin, where

rmin =
√

−2 (d − 3) ckκ2. (E.8)

We solve lim
r→rmin

T (r, φ0) (r − rmin) = 0, to find:

φ2
0 =

k

4 (d − 2)3 κ2

(

d (d − 1) + 4 (d − 2) (d − 3) cκ4Λ
)

. (E.9)

The above curve crosses the φ axis at φ2
0 = d(d−1)k

4(d−2)3κ2
, which is lower than the point where

the curves lying in the c > 0 region cross the φ axis, except for d = 4 when they coincide.

For potentials smaller than the above there are two black holes for every temperature, and

for larger one or three black holes, except for d = 4 when there is always one.

Notice that the behavior of a constant φ curve as r → rmin determines whether this

curve crosses the local stability curve an even or odd number of times. In 2(a) and 5(a) and

(b), we see that there are some cases when the local stability behavior changes without

change in the behavior of the temperature for r → rmin. This happens for positive c

at d = 4 and for negative c at d > 4. In both cases the local stability curve has a

minimum temperature, and there are three black holes for the same temperature (for

some temperatures) if φ < φ0, where φ0 is the potential for the curve that contains the

aforementioned minimum. So in order to specify the curve that separates the area with

one black hole from the area of three black holes we need to solve

dTCφ
(r)

dr

∣

∣

∣

∣

r=rminT,Cφ=0

= 0, (E.10)

T
(

rminT,Cφ=0, φ0

)

= TCφ

(

rminT,Cφ=0

)

. (E.11)

For d > 4 this gives a quite complicated expression. Some important characteristics of this

curve is that it crosses the curve separating the odd-even number of black holes areas at
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the point

(

c = − d(d−3)
4(d−1)(d−2)κ4Λ

, φ2
0 =

d(d2−4d+5)k
(d−1)(d−2)3κ2

)

. For c smaller than the above the local

stability curve is one-to-one in rH , TH and there is no constant φ curve containing three

black holes with the same temperature. Finally, it crosses the φ axis at the same point as

the curves at the c > 0 region.

Finally, at d = 4, c > 0, it is easy to solve the relevant equations to get

r2
min T,Cφ=0 = 6ckκ2, (E.12)

φ2
0 =

3k

8κ2

(

1 + 6ckκ2
)

. (E.13)

This curve crosses the c axis at c = − 1
6κ4Λ . There are no constant φ curves containing

three black holes at the same temperature for c greater than the above.

Let’s check a detail about the d > 4, c < 0 case. It is obvious that for some potentials

the metastable black hole (the smallest one) has manifestly negative entropy. This happens

for φ < φ0, where φ0 is the potential for the curve crossing through the black hole with

infinite specific heat and zero entropy. Solving TCφ
(rS=0) = T (rS=0, φ0) we get

φ2
0 =

k

4 (d − 2)4 κ2

(

d3 − 3d2 + 4d − 8 + 4 (d − 1) (d − 2) (d − 4) cκ4Λ
)

. (E.14)

The above curve is tangent at the curve separating the one black hole region from the three

black holes region at c = − (d−3)(d−4)(2d−3)
4(d−1)(d−2)(2d−5)κ4Λ

.

Finally, let’s be a little careful about the Hawking-Page phase transition for c < 0. It

is possible that a constant φ curve crosses the global stability curve; however, this happens

at an area of locally unstable black holes or negative entropy black holes. The first case

occurs if c > − d(d−3)
4(d−1)(d−2)κ4Λ

for φ > φ0, where φ0 is the potential for the curve crossing

the mutual point of the global stability and local stability curve. We can specify this point

by solving dTc(r)
dr

∣

∣

∣

r=rminT,F=0

= 0, and then T (rmin T,F=0, φ0) = Tc (rminT,F=0), to get a very

complicated expression.

The second case occurs when c < − d(d−3)
4(d−1)(d−2)κ4Λ

and φ > φ0 where φ0 is the potential

for the curve crossing the mutual point of the global stability and zero entropy curve. We

need to solve TF=0 (rS=0) = T (rS=0, φ0) to get

φ2
0 =

k

4d (d − 2)2 κ2

(

d (d + 1) + 4 (d − 1) (d − 2) cκ4Λ
)

. (E.15)

The two curves above meet at
(

c = − d(d−3)
4(d−1)(d−2)κ4Λ

, φ2
0 = (d−1)k

2(d−2)2κ2

)

. At this c they

are also parallel, thus forming a continuous and smooth curve. For c equal to the above

the entropy bound occurs at exactly the minimum of the global stability curve.

One final detail. If one extends the curves above, in the complementary regions of c we

used, there is an area created, containing curves with three Hawking-Page phase transitions.

However, always only one of them happens in a region with both positive entropy and

positive specific heat. Specifically in the relevant region for c > − d(d−3)
4(d−1)(d−2)κ4Λ

, the two

black holes smaller in radius, have negative specific heat, and the smallest has negative
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entropy, while in the case c < − d(d−3)
4(d−1)(d−2)κ4Λ

, the two smaller ones have negative entropy

and the smallest has negative specific heat. In this region the curve separating odd-even

number of black holes appears, and once one enters in the region of two black holes, there

are actually only two positions of Hawking-Page phase transition, again only one being

valid, as the other is in a region with negative entropy. This happens for c as small as

c = d(d−1)(2d−5)
4(d−2)(d−3)(2d−3)κ4Λ

, where our curve ends on the odd-even separating curve.

k < 0. Observing figures 8(a), (b) and 9(a), we see that a constant φ curve enters the

negative mass region if φ < φ0, where φ0 is the potential for the curve that contains the

extremal massless black hole. We can find the horizon radius of the extremal massless

black hole using equation (D.3):

rE,M=0 =
kd

2κ2Λ



1 +

√

4 (d − 3)2

d (d − 2)
cκ4Λ



 . (E.16)

So requiring that TH (rE,M=0, φ0) = 0, we find that φ0 equals:

φ2
0 = − k

2 (d − 2)2 κ2



1 +
4d−3

d cκ4Λ

1 +
√

1 + 4 (d−3)2

d(d−2)cκ
4Λ



 . (E.17)

This curve crosses the c axis at c = − d(d−1)
4(d−2)(d−3)κ4Λ

. For c larger than the above there are

no negative mass black holes.

Observing figures 8(b), 9(a) and (b) we see that a constant φ curve enters the negative

entropy region, if φ < φ0 where φ0 is the potential for the curve that contains the extremal

black hole with zero entropy. From equation (4.14), we know that for ck < 0 all black holes

with vanishing entropy have horizon radius:

rS=0 =
√

−2 (d − 1) ckκ2. (E.18)

So requiring TH (rS=0, φ0) = 0 we find that φ0 equals:

φ2
0 =

k

4 (d − 2)3 κ2

(

d2 + d − 8 + 4 (d − 1) (d − 2) cκ4Λ
)

. (E.19)

The above curve crosses the c axis at c = − d2+d−8
4(d−1)(d−2)κ4Λ . This is the minimum c for which

there are negative entropy black holes.

Now trying to combine the above, we check whether a constant φ curve enters a region

of negative mass black holes with positive entropy. If we observe figure 8(b) this happens

if φ < φ0, where φ0 is the potential for the curve that contains the massless black hole with

zero entropy. Thus solving TH (rS=0, φ0) = TM=0
H (rS=0), we get:

φ2
0 = − k

4d (d − 2)2 κ2

(

d (d + 1) + 4 (d − 1) (d − 2) cκ4Λ
)

. (E.20)

This curve crosses the massless curve and the entropy curve, at the same point
(

c = − d(d2−5)
4(d−1)2(d−2)κ4Λ

, φ2
0 = − k

(d−1)(d−2)2κ2

)

. This value of c is the minimum for which
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there are positive mass black holes with negative entropy. This curve also crosses the c

axis at c = − d(d+1)
4(d−1)(d−2)κ4Λ

. This is the maximum c for which negative mass black holes

with positive entropy exist.

Finally, in order to know if a constant φ curve crosses the local stability curve we need

just to specify the behavior of the temperature as horizon radius approaches the minimum

radius

rmin =
√

−2 (d − 3) ckκ2, (E.21)

as we can see in figure 9(b). If it the curve goes to infinity, that means that it had a

minimum at some horizon radius. There it has crossed the local stability curve. If is

goes to minus infinity then from the figure we can see that it is one-to-one, and obvi-

ously it has not crossed the local stability curve. So the critical φ0 is the one for which

lim
r→rmin

T (r, φ0) (r − rmin) = 0. Solving this we get

φ2
0 =

k

4 (d − 2)3 κ2

(

d (d − 1) + 4 (d − 2) (d − 3) cκ4Λ
)

. (E.22)

This curve crosses the c axis at c = − d(d−1)
4(d−2)(d−3)κ4Λ

. This is the minimum c for which there

are locally unstable black holes. It coincides with the minimum c for which there are no

negative mass black holes.

E.2 ε-φ−2 plane

k > 0. For ε < 0 the ε-bound excludes the region of the black holes where the small χ

expansion is good. That allows us to specify the regions of qualitatively different thermal

behavior approximately, using the small χ expansion.

First let’s specify which constant φ curves contain an extremal black hole. We can

see from figure 14(a), that extremal black holes are contained in constant φ curves only

if φ > φE , where φE is the potential of the curve containing the extremal black hole

that saturates the ε-bound. Using the zeroth order forms for the potential (4.10) and the

temperature (4.16), we acquire the result:

φE =
1

(d − 2)κ

√

(d − 1) k

2 (−108g4Λε + 1)
, (E.23)

while if one uses the first order corrected ones (7.5) and (7.6), one finds:

φE =
85d − 116

3 (d − 2) (3d − 4) κ

√

(d − 1) k

6 (−2916g4Λε + 29)
. (E.24)

Notice that both results are of the form:

φE =
A

√

ε − ε+
1

(E.25)

and actually are very close to the actual numbers we calculated numerically, taking into

account the full dependence on ε.
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Similarly in order to calculate which potentials cross the F -curve, thus allowing for

Hawking-Page phase transitions, we need to specify the potential containing the black hole

with zero free energy that saturates the ε-bound, φHP . Then a constant φ curve crosses the

F -curve provided that φ < φHP . Once again using the zeroth order result for the potential

and the free energy we get:

φHP =
1

(d − 2)κ

√

d (d − 1) k

2 (108 (d − 2) g4Λε + d)
, (E.26)

while at first order:

φHP =
85d − 116

3 (d − 2) (3d − 4)κ

√

√

√

√

d (d − 1) k

6
(

2916 (d − 2) g4Λε + d(83d−112)
3d−4

) . (E.27)

We again observe that both results are of the form:

φ =
A

√

− (ε − ε0)
, (E.28)

but now the value of ε0 depends on the number of dimensions. It looks like ε0 will equal

−ε+
1 at the limit of infinite number of dimensions.

We can specify similarly the curve separating regions with one and two black holes to

find at zeroth order:

φLS =
1

(d − 2)κ

√

(d − 1) k

2 (108g4Λε + 1)
, (E.29)

Notice that this curve is of the same form as the curve specifying the existence of extremal

black holes, where we have substituted ε with −ε. Thus the positions of the poles of the

two curves are opposite, and so are the inclinations of the two curves in the ε-φ−2 plane.

This agrees very well with our numerical results, where we have taken into account the full

ε dependence.

We further notice that the inclination of the curve separating Hawking-Page and non-

Hawking-Page constant φ curves in the ε − 1
φ2 plane is a fraction d−2

2 of that of the curve

separating one and two black hole solutions, the later being equal to the opposite of the

curve separating constant φ curves containing extremal black holes. This is consistent with

our numerical results.

We can specify specify the values of ε+
1 and ε+

2 in figure 17. ε+
1 is the value of ε that

the extremality curve crosses the 1
φ2 axis, thus it is the minimum ε, that extremal black

holes exist. Using the first order result we acquired above we find:

ε+
1 =

29

2916g4Λ
. (E.30)

Finally, ε+
2 is the value of ε where the Hawking-Page curve crosses the extremality curve

and ends. Again using the first order results we got above we find:

ε+
2 =

2d

2916 (3d − 4) g4Λ
. (E.31)
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Unfortunately for ε > 0 the critical constant φ curves cross the F -curve and Cφ-curve

in regions where the small χ expansion is not good, thus making the numerical calculation

of the different regions necessary.

k < 0. As we can see in figure 16(a) and (b) for ε < 0, the constant φ curves are again

separated in two classes by the curve containing the extremal black hole that saturates

the ε-bound. Repeating the same exact procedure as in the k > 0 we find the same exact

result given by equations (E.29) and (E.24). Notice though that now the curves containing

extremal black holes are those with φ < φE .

Finally, we can calculate which constant φ curves contain massless black holes. They

are those with φ < φM , where φM is the potential of the curve containing the massless black

hole that saturates the ε-bound. Using the expressions for the thermodynamic energy (7.11)

we get at zero order:

φM =
1

κ

√

− d (d − 1) k

2 (d − 2) (108 (d − 2) g4Λε + d)
(E.32)

and at first order in ε:

φM =
85d − 116

3 (d − 2) (3d − 4)κ

√

√

√

√− d (d − 1) k

6
(

2916 (d − 2) g4Λε + d(83d−112)
3d−4

) . (E.33)

Notice that strangely these expression are identical with those for φHP for the k > 0 case,

having substituted k with −k. The inclination of this curve in the ε− 1
φ2 plane is a fraction

d−2
2 of that of the curve separating regions with extremal and without extremal black holes.

Let’s specify the values ε−1 and ε−2 in figure 18. ε−2 is the value of ε that the extremality

curve crosses the 1
φ2 axis. As in the k > 0 case we find:

ε−2 =
29

2916g4Λ
= ε+

1 . (E.34)

ε−1 , is the value where the curve separating constant φ curves containing and non-containing

massless black holes meets the extremality curve and ends. Using the first order results we

acquired above we find:

ε−1 =
d (85d − 114)

2916 (3d − 4) g4Λ
. (E.35)

Once again we cannot acquire the critical curves using the small χ expansion in the

ε > 0 case.
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